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Abstract—How can we find all connected components in an
enormous graph with billions of nodes and edges? Finding
connected components is a fundamental operation for various
graph computation tasks such as pattern recognition, reachabil-
ity, graph compression, etc. Many algorithms have been proposed
for decades, but most of them are not scalable enough to process
recent web scale graphs. Recently, a MapReduce algorithm was
proposed to handle such large graphs. However, the algorithm
repeatedly reads and writes numerous intermediate data that
cause network overload and prolong the running time. In this pa-
per, we propose PACC (Partition-Aware Connected Components),
a new distributed algorithm based on graph partitioning for
load-balancing and edge-filtering. Experimental results show that
PACC significantly reduces the intermediate data, and provides
up to 10 times faster performance than the current state-of-the-
art MapReduce algorithm on real world graphs.

I. INTRODUCTION

How can we find all connected components in an enormous
graph with billions of nodes and edges? A connected compo-
nent of a graph is a set of nodes where any two nodes are
connected by a path of edges. Finding connected components
is a fundamental operation for various graph computation tasks
such as pattern recognition [1], [2], reachability [3], [4], graph
compression [5], [6], graph partition [7], [8], random walk [9],
etc.

In order to compute connected components in billion-scale
graphs, many algorithms have been proposed in different
ways: [/O efficient [10], [11], distributed memory [12]-[14],
and MapReduce algorithms [15]-[17]. Most of the algorithms
have limited scalability. The I/O efficient algorithms utilize
only a single machine, and thus they cannot process a graph
whose size exceeds the external memory space of the machine.
The distributed memory algorithms increase the computation
speed by utilizing multiple machines; however, they cannot
handle a graph whose intermediate data size is larger than the
distributed memory space. The MapReduce algorithms, which
are disk-based and distributed, increase the size of processable
graphs theoretically; however, they show significantly slower
performance than the I/O efficient or distributed memory
algorithms on medium size graphs because they write and read
massive intermediate data repeatedly during computation [11].

In this paper, we propose a new distributed algorithm PACC
(Partition-Aware Connected Components) for computing con-
nected components in a graph, which is more scalable than
I/O efficient or distributed memory algorithms, and is much
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Fig. 1: Speedup over the optimized alternating algorithm.
PACC-opt with 7=20M shows the best performance on all
the graphs, and it shows up to 10 times faster performance
than the optimized alternating algorithm on the Patent graph.
Details on the dataset are given in Table II.

faster than the MapReduce algorithms. PACC is inspired by the
alternating algorithm proposed by Kiveris et al. [17], which
is the state-of-the-art MapReduce algorithm. We observe that
the alternating algorithm suffers from ‘the curse of the last
reducer’. PACC, on the other hand, distributes workloads
evenly among machines by partitioning the graph. Also, we
note that the alternating algorithm reads and writes a lot
of edges unnecessarily and repeatedly, even when only few
edges change during a round. PACC achieves speedup by
filtering unnecessary edges out, and by using a single machine
algorithm when a few edges remain. The main contributions
of this paper are as follows:

o Algorithm. We propose PACC, a new distributed algo-
rithm for computing connected components in a large
graph, which is designed to balance workloads, and to
minimize input/shuffled data size and required rounds.

« Theory. We prove the correctness and various character-
istics of PACC. PACC guarantees the input size does not
increase in each round.

« Experiment. The proposed algorithms are experimentally
evaluated with both real world and synthetic graphs. The
results show that the proposed algorithm (PACC-opt with
a parameter 7=20M) outperforms the previous algorithm
(Alt-opt; the optimized alternating algorithm) by up to
10x (see Figure 1).

The binary code of our method and the datasets used in

the paper are available at http://datalab.snu.ac.kr/pacc. The
remaining part of this paper is organized as follows. In



TABLE I: Table of symbols.

Symbol Definition
G = (V,E) Simple graph with the set V' of vertices and the set E of
edges.
u,v,M Vertices.
(u,v) Edge between u and v.
T'(u) Set of neighbors of u: {v|(u,v) € E}.
't (u) Set of large neighbors of u: {v|v € I'(u),v > u}.
' (u) Set of small neighbors of u: {v|v € I'(u),v < u}.
p Number of partitions.
13 Hash function V' — {0, - - - , p—1}. £(u) is the partition
containing u.
[S): i-th partition of a set S: {v|v € S,&(v) = i}.
m(u) Minimum node in I'(u) U {u}: min(T'(u) U {u}).
m;(w) Minimum node in [I'(uw) U {u}];: min([T'(w) U {u}];).
T Threshold for the number of input edges.

Section II, we review previous researches on the connected
component computation. In Section III, we formally define the
problem of connected component computation and introduce
the alternating algorithm which is the baseline of our work.
The details of the proposed algorithm and an analysis on the
algorithm are presented in Section IV. We give experimental
results and evaluations of the proposed algorithm in Section V.
Finally, we conclude in Section VI. Frequently used symbols
in this paper are listed in Table I.

II. RELATED WORK

In this section, we introduce several methods for com-
puting connected components. We first show single-machine
algorithms which can be used as a module of the proposed
algorithm. Then, we show distributed algorithms including
distributed-memory and MapReduce algorithms.

A. Single-machine algorithms

A well known and effective way to compute connected
components is to conduct a traditional graph traversal algo-
rithm, the breadth-first search or the depth-first search; they are
linear-time algorithms. For fast computation, a multi-core al-
gorithm is also proposed by Patwary et al. [18]. This algorithm
is based on the Union-Find algorithm which maintains disjoint
sets of nodes where each set represents connected nodes, and
if an edge links two different sets, the algorithm unifies the
two sets. As these algorithms are memory based, however,
they cannot handle very large graphs exceeding the size of
main memory.

Disk-based algorithms, GraphChi [10] and DSP-CC [11],
increase the size of data which can be processed in a single
machine. GraphChi is a disk-based graph mining platform
running on a single machine. This platform provides an
implementation for computing connected components based
on label propagation; each node receives labels from its neigh-
bors, chooses the minimum label, and propagates the label
to the neighbors, iteratively. DSP-CC is another disk-based
algorithm based on the Union-Find algorithm; this algorithm
shows impressive performance on billion scale graph by fully
utilizing solid-state drives (SSDs). However, both GraphChi
and DSP-CC do not scale to graphs with hundreds of billions
of nodes and edges.

Note that the above single-machine algorithms can be used
as a module of the proposed algorithm (see Section IV-A); that
is, the proposed algorithm is a tool for extending such single
machine algorithms to be able to handle very large graphs.

B. Distributed-memory algorithms

Parallel Random-Access Machine (PRAM) is a classical
model for analyzing the performance of parallel algorithms. A
lot of PRAM algorithms for computing connected components
have been proposed. As the PRAM model is just theoretical,
Bader and Cong [19] survey the practical algorithms imple-
mented on symmetric multiprocessors (SMPs), and propose
another algorithm for SMPs based on a parallel depth-first
search; the algorithm first finds a shallow spanning tree on a
single machine and starts the depth-first search on different
nodes of the spanning tree.

Recently, several distributed-memory graph mining plat-
forms based on a vertex-centric programming model have been
proposed: Pregel [12], GraphLab [13], PowerGraph [14], etc.
These platforms provide implementations for connected com-
ponent computation, which are based on a label propagation
like GraphChi.

Even though the above distributed-memory algorithms
achieve faster performance than single machine algorithms,
all the distributed-memory algorithms are limited in handling
very large graphs with hundreds of billions of nodes and edges
which exceed the shared memory space.

C. MapReduce algorithms

MapReduce [20] is a disk-based programming framework
supporting parallel and distributed computation for processing
enormous data. Thanks to its fault-tolerance, high scalablility,
and ease of use, MapReduce has been used for various graph
analysis tasks such as radius/diameter calculation [15], triangle
counting [21], [22], and graph visualization [23], [24].

In order to compute connected components in very large
graphs, several algorithms have been proposed in MapRe-
duce. One obvious way to compute connected components
in a distributed environment is to do the breadth-first search
repeatedly until all nodes are visited. This simple algorithm
requires as many rounds as the sum of the diameter of each
connected component. Conducting the breadth-first search
from every node concurrently, Pegasus [15] and Zones [25],
[26] reduce the number of required rounds to O(d) where
d is the diameter of the largest connected component in a
graph. These algorithms, however, still require a lot of rounds,
which is critical when the data is very large; for example,
the diameter of YahooWeb, a graph used in our experiments,
is more than 30. Hash-Greater-to-Min [16] requires only
logarithmic rounds on the number of nodes (i.e., O(logn)) to
compute connected components. Hash-to-Min, proposed in the
same paper, shows better performance than Hash-Greater-to-
Min, although Hash-to-Min does not guarantee the logarithmic
round number. However, both Hash-to-Min and Hash-greater-
to-Min generate large amount of intermediate data, more



than double the number of edges in the initial graph, which
becomes a performance bottleneck.

The work most related to ours is presented in [17], which
proposes two MapReduce algorithms: two-phase and alter-
nating. These algorithms resolve the problem of massive
intermediate data of the Hash-to-Min algorithm; during the ex-
ecution of the algorithms, the number of edges never increases.
However, the algorithms hit another performance bottleneck
because of the load-balancing problem. We introduce the
alternating algorithm with more details in Section III-B, due to
its relevance to our work. The authors of [17] also propose the
two-phase-DHT algorithm which augments MapReduce with
a distributed hashtable (DHT) to reduce the number of rounds.
The two-phase-DHT algorithm shows better performance than
the two-phase and alternating algorithms. The algorithm’s
performance, however, depends heavily on the performance
of the DHT as it requires massive random accesses to the
DHT; the two-phase-DHT algorithm is outperformed by the
optimized version of the alternating algorithm on billion-scale
graphs.

III. PRELIMINARIES

In this section, we define the connected component and con-
nected component computation, and introduce the alternating
algorithm which is the baseline of our method.

A. Problem Definition

We first define the connected component.

Definition 1. (Connected component) A connected component
of an undirected graph is a set of nodes such that any two
nodes are connected by paths and no node is connected to a
node that is not in the set.

In Figure 2, for example, the graph has three connected
components: {1,2,4,7,8,9,10}, {5,11}, and {3,6,12}. The
goal of connected component computation is to find all con-
nected components in a given graph. This task can be achieved
by finding the minimum node reachable from each node. For
instance in Figure 2, we can recognize that the nodes 1, 2, 4,
7, 8,9, and 10 are in the same connected component by noting
that these nodes share the same minimum reachable node 1;
each minimum reachable node (1, 3, and 5 in the example)
becomes the unique identification number of each connected
component. Next, we define the problem of connected com-
ponent computation as follows:

Definition 2. (Connected Component Computation) Given an
undirected graph G = (V, E), the problem of connected com-
ponent computation is to map each node to the identification
number of the connected component containing the node where
the identification number can be the minimum number of nodes
in the connected component.

For a node u, we denote by I'(u) = {v|(u,v) € E}
the neighbors of w. Additionally, we use I'*(u) = {v|v €
I'(u),u < v} and T"(u) = T(u) \ T (u) to denote the
large and small neighbors of a node u, respectively. We let
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Fig. 2: An example graph with 3 connected components.

m(u) = min(T'(u) U {u}) be the minimum neighbor of .
For example in Figure 2, T'(7), I'"(7), T=(7), and m(7) are
{1,2,4,8,9,10}, {8,9,10}, {1,2,4}, and 1, respectively.

B. The Alternating Algorithm

Kiveris et al. [17] proposed two MapReduce algorithms,
namely two-phase and alternating, for connected component
computation. Among the two algorithms, we briefly introduce
the alternating algorithm as it is the baseline of our work. Note
that in practice, the alternating algorithm requires a smaller
number of rounds than the two-phase algorithm, although the
two-phase algorithm has a theoretical bound O(log?(n)) on
the number of required rounds while the alternating algorithm
does not.

The alternating algorithm conducts two core operations, the
large-star and the small-star, alternately until no more edges
are added or deleted. For each w, the large-star operation
replaces for every v € I't(u) the edge (v,u) with an edge
(v,m(u)). For each u, similarly, the small-star operation
replaces for every v € I'"(u) \ {m(u)} the edge (v,u) with
an edge (v, m(u)).

A graph is transformed into a star-like graph after several
rounds of the alternating algorithm. It implies that while most
nodes will have few neighbors, some nodes will have a massive
amount of neighbors. This phenomenon causes ‘the curse
of the last reducer’ problem [27] which means that most
computations are concentrated on few reducers, while other
reducers do nothing and just wait for them.

This load-balancing problem is addressed partially in the
same paper; for every node u that has more neighbors than a
threshold p, it makes p copies of u, links the copies to u, and
evenly distributes the neighbors of u to the copies. The copied
nodes are cleaned up by one additional finalization round. This
optimized alternating algorithm (shortly Alt-opt), however, is
not a perfect remedy; it has the following two problems. One
is that the method requires additional information about the
degree of nodes in each iteration. The other is that the number
of edges can increase in each round due to the edges created
for the copied nodes, while the original alternating algorithm
guarantees that the number of edges never increases. Note that
our method does not require such an additional information,
and guarantees that the number of edges does not increase (see
Lemma 7).



IV. PROPOSED METHOD: PARTITION-AWARE CONNECTED  A. Partitioning for load-balancing

COMPONENTS

We propose PACC (Partition-Aware Connected Compo-
nent), an algorithm for connected component. There are sev-
eral challenges to efficiently compute connected components
in a distributed environment.

1) Load Balancing. The alternating algorithm suffers from
‘the curse of the last reducer’ in the large-star operation.
How can we balance the workload effectively?

2) Minimize input/shuffled data. The size of input and
shuffled data is closely related to the performance of a
distributed algorithm. How can we minimize the size of
input/shuffled data of PACC?

3) Minimize the number of rounds. The number of rounds
taken by an algorithm significantly affects the perfor-
mance. How can we minimize the number of rounds of
PACC?

We handle the above challenges with the following main
ideas, the details of which are introduced in later subsections.

1) Partitioning the nodes of a graph prevents edges from
getting concentrated on a few nodes; and thus, the work-
loads are balanced among machines. (Section IV-A)

2) Filtering out edges that do not cross partitions or
do not change in the future significantly reduces the
number of input edges in each round. Accordingly, the
size of shuffled data is also decreased. (Section IV-B)

3) Replacing several rounds of distributed computation
with a single machine computation, when the number
of remaining edges becomes lower than a threshold 7
by the edge-filtering, further reduces the running time.
(Section IV-B)

We first describe PACC-base which partitions the nodes for
load-balancing, and explain how the partitioning contributes
to the load-balancing (Section IV-A). After that, we introduce
our desired algorithm PACC-opt which adopts an edge-filtering
method for reducing the input/shuffled data size, and we show
how it enables reducing the number of rounds (Section IV-B).
Lastly, we give the theoretical analysis of PACC-opt (Sec-
tion IV-C).
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Fig. 3: The results of (b) a round of the alternating algorithm,
and (c) a round of the proposed algorithm PACC-base, given
the input graph in (a). While the alternating algorithm gathers
all the edges to node 1, PACC-base distributes the edges into
several partitions (2 partitions in this example).

PACC-base consists of two steps: partitioning (lines 2-5
in Algorithm 1), and computation (line 6 in Algorithm 1).
The partitioning step is to partition the input graph into p
overlapping subgraphs so that the connected components are
computed independently in each subgraph in the computation
step. Each partition (or subgraph) can be processed in a
different or in the same machine because a partition is a logical
division of data.

1) The partitioning step: The alternating algorithm has a
load-balancing problem as mentioned in Section III-B, and the
main cause of the problem is that edges congregate around
few nodes in each round. Figure 3b shows the result of a
round of the alternating algorithm given the input graph in
Figure 3a. In this example, the alternating algorithm gathers all
the edges to the minimum node 1; consequently, computations
are concentrated on the node 1 in the next round. PACC-
base resolves this problem by partitioning nodes; each node
is linked to the minimum node within the same partition
instead of the ‘global’ minimum node. A random hash function
§:V —{0,---,p—1} is used for partitioning nodes where p
is the number of partitions, and we denote by £(v) the partition
of a node v. The partition id of each node is randomly selected.
The partitioning prevents edges from getting concentrated on a
few nodes. Thus, the workloads are distributed into partitions.
For example in Figure 3c, PACC-base divides the nodes into
two partitions, and the edges are distributed into the partitions.

The partitioning step consists of several rounds, and each
round conducts two distributed operations: PA-large-star and
PA-small-star. The two operations are similar to the large-
star and the small-star operations of the alternating algorithm,
respectively; additionally, PA-large-star and PA-small-star con-
sider the partitions of nodes. Let [S]; = {v|v € S,¢{(v) = i}
be the i-th partition of a set S. Let m(u) = min(T'(u)U{u}) be
the minimum neighbor of u, and m;(u) = min([I"(u) U{u}];)
be the ‘local’ minimum neighbor of w in the ¢-th partition.
For each node w € V and for some neighbors v of u,
PA-large-star and PA-small-star replace the edge (v,u) with
an edge (v, Mgy (u)) if v # mew)(u), or (v,m(u)) if
v = Mg(y)(u) and v # m(u). PA-large-star is responsible for
large neighbors I'"(u) of u, and PA-small-star is responsible
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(a) Node 7 and its
neighbors

(b) PA-large-star (c) PA-small-star
Fig. 4: An illustration of PA-large-star and PA-small-star
operations at node 7. The nodes with an orange color are
linked to the local minimum node in each partition. The local
minimum node 2 in the partition 2 is linked to the global
minimum node 1.



Algorithm 1: PACC-base

Algorithm 3: PA-small-star

Input: Edges (u,v) as a set E of key-value pairs (u;v)

Output: A unique connected component id for every node v € V'
1 out < E

// Partitioning step:
2 repeat
3 out < PA-large-star(out)
4 out < PA-small-star(out)
5
6

lines 2 through 5

until Convergence;

return CC-Computation(out) ; // Computation step

Algorithm 2: PA-large-star

Map : input (u;v)
1 emit (u;v) and (v;u)

Reduce : input (u;I'(u))
2 foreach v € 't (u) do
3 if v # Mgy (u) then
4 | emit (v;me(y) ()
5 else if v # m(u) then
| emit (v;m(u))

for small neighbors and u, i.e., I'"(u) U {u}. Figure 4 shows
an illustration of PA-large-star and PA-small-star operations at
node u = 7. The local minimum nodes in the two partitions
are the node 1 and the node 2. PA-large-star links the large
neighbors of the node 7 (i.e., I'7(7) = {8,9,10}) to the local
minimum node in each partition; the node 9 is connected to
the node m4(7) = 1, and the node 8 and 10 are connected to
the node mo(7) = 2. PA-small-star is in charge of the node
u = 7 and its small neighbors I'(7) = {1, 2,4}; the node 7 is
connected to the node m, (7) = 1, and the node 4 is connected
to the node ms(7) = 2. The node 2 is connected to the global
minimum neighbor m(7) = 1 of the node 7 because the node
2 is a local minimum node of the node 7.

Both PA-large-star and PA-small-star can be easily im-
plemented in a distributed manner. The MapReduce version
pseudo codes are in Algorithm 2 and Algorithm 3.

Lemma 1. PA-large-star and PA-small-star keep the connec-
tivity of the original input graph.

Proof. Let us consider a node w and its neighbors I'(u).
After PA-large-star on u, every node v € I'f(u) has a
path to the global minimum node m(u) of w: v is directly
connected to m(u) if v = mgq,)(u), or via me,)(u) in the
other case. Similarly, performing PA-small-star on u connects
v € I'"(u) U{u} to m(u) directly if v = myg(,, or via
Mg (y)(u) in the other case. Accordingly, PA-large-star and PA-
small-star share the same connectivity with the large-star and
the small star operations which preserve the connectivity of
the graph as proved in Lemma 1 and 3 of [17]. O

2) The computation step: After several rounds, a graph
is divided into p overlapping subgraphs. Each subgraph is
an induced subgraph on the nodes in a partition and their
small neighbors, if any, that are in different partitions. In
Figure 3c, the induced subgraphs on the nodes {1,7,9}
and {1,2,4,8,10} are the examples. The CC-Computation
operation in the computation step finds connected components

Map ¢ input (u; v)
1 emit (max(u,v); min(u,v))
Reduce : input (u;T"~(u))
2 foreach v € ' (u) U {u} do
3 if v # mg(y)(u) then
4 | emit (v;mg(yy ()
5 else if v # m(u) then
6 | emit (v;m(u))

Algorithm 4: CC-Computation

Map s input (u; v)
1 emit ({(max(u,v)); (u,v))

Reduce : input (p; Ep)
2 LocalCC(E)p)

in each subgraph independently: it first groups all edges
according to the subgraph they belong to, and then computes
the connected components in each subgraph using a single
machine algorithm. The CC-Computation operation can be
implemented as a single round MapReduce algorithm as in
Algorithm 4. Each map operation sends an edge (u,v) to a
partition £(max(u,v)). Then, each reduce operation receives
a set of edges I, corresponding to the partition p, and finds
connected components in the edge-induced subgraph on £, by
delegating the task to LocalCC, a single machine algorithm.
Any single machine algorithm that finds the minimum node
reachable from each node in the given edges can be used
for LocalCC; we use a Union-Find algorithm with the path
compression [28] for our experiments.

Note that, even though each subgraph contains a part of
a graph, the CC-Computation operation finds the ‘global’
minimum nodes reachable from each node because local
minimum nodes are connected to the global minimum nodes,
and all the other nodes are connected to the local minimum
nodes. We explicitly claim the following lemma.

Lemma 2. After the partitioning step of PACC-base, each
subgraph is a set of star graphs where the center nodes are
the local minimum nodes in the corresponding partition, and
each star graph contains the global minimum node of the
corresponding connected component.

3) Putting it together: We present the PACC-base algorithm
in Algorithm 1. PACC-base partitions the input graph by
alternately performing PA-large-star and PA-small-star oper-
ations on it until convergence. The algorithm converges when
there is no change in the graph structure, that is, when the
sum of the number of edges modified by both operations in
one iteration becomes zero. From the resulting, overlapping
subgraphs, PACC-base then finds the connected components
using the CC-Computation operation.

B. Edge-filtering

In this section, we present our proposed algorithm, PACC-
opt, which optimizes PACC-base with the edge-filtering pro-
cess. We start from the observation that the number of edges
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Fig. 5: The number of remaining edges and the number
of modified edges by large-star and small-star operations in
each round of the alternating algorithm on YahooWeb. While
the number of modified edges decreases rapidly, that of the
remaining edges does not decrease below a point, that is, the
number of nodes. This implies that most edges just come and
go with no change.

affected by the large-star and the small-star operations drasti-
cally decreases in each round, while the number of remaining
edges does not decrease below the number of nodes in a graph
(see Figure 5). This implies that most edges just come and go
with no changes.

Lemma 3. The number of input edges at each round of the
alternating algorithm does not decrease under |V'|—|C| where
|V| is the number of nodes and |C)| is the number of connected
components.

Proof. The final output of the alternating algorithm is a set
of star graphs where each node is connected to the minimum
node in its connected component. That is, the final output
contains |V| — |C| edges. Meanwhile, by the Lemma 2 and 3
in the paper [17], the number of output edges of each round
does not increase. It implies that every round gets no less than
|[V| —|C] edges as inputs. O

The partitioning step of PACC-opt is similar to that of the
alternating algorithm, but the goal of the step is partitioning
rather than computing connected components. Concentrating
on partitioning enables PACC-opt to exclude a lot of edges,
which leads to a significant decrease in the size of input and
shuffled data. There are two cases that PACC-opt filters an
edge (u,v) out, where we assume u < v without loss of
generality:

Case 1. The two nodes are in the same partition, and v has no
neighbor except u. That is, £(u) = £(v) and T'(v) =
{u}.

The node u has no small neighbor, and all the
neighbors of u have no neighbor except u. That is,
I'~(u) =0, and T'(n) = {u} for every n € I'(u).

The key idea of the edge-filtering in case 1 is from the fact
that CC-Computation of PACC-opt finds connected compo-
nents in each subgraph independently. The only requirement
for correctly finding connected components is that the global
minimum nodes of each connected component should be
reachable from every node within each partition. For this
purpose, filtering an edge in case 1 makes the edge to stay
in a partition, and does not let the edge cross partitions. As a

Case 2.

Partitioning Step
[ I I
( Input )—> Round 1 »{ oyt > Round 2| *** —»|Round R
Graph

Computation Step

CC-Computation

Components
Fig. 6: Data-flow of PACC-opt. Each round of the partitioning
step emits three different sets: ‘out’, ‘in’, and ‘cc’. The ‘out’
set of each round is the input of the next round, and some
edges are accumulated in the ‘in’ set or the ‘cc’ set. The
computation step gets the ‘out’ set of the final round, the

‘in” set, and the ‘cc’ set as inputs, and finalizes connected
components.

result, the edges filtered in case 1 form a set of tree graphs
where the edges do not cross partitions.

Lemma 4. The edges filtered in case 1 together form a set of
tree graphs.

Proof. By the definition of the case 1, an edge (v,u), as-
suming u < v, is filtered out when v and v are in the same
partition, and v has no neighbor except u. Thus, the node v
has no small neighbors except v and no large neighbors as
well. However, v could have had large neighbors vy at one
time, which had been filtered out later by the case 1; in that
circumstance, by the same reason as above, the node v was
the only small neighbor of the nodes v4, meaning that there
is no cycle. Thus the claim follows. O

Edges of case 2 together constitute a star graph where the
center node is the minimum. By the definition of PA-large-
star and PA-small-star operations, these edges do not change
in the following rounds. Thus, we can simply exclude such
edges from the input of the next round.

Each round in the partitioning step filters such edges out and
excludes them in the next round by emitting three different
edge sets: ‘out’, ‘in’, and ‘cc’; only the ‘out’ set becomes
the input of the next round, while the ‘in’ and the ‘cc’ sets
are not used as input. Edges of the case 1 and the case
2 are emitted to the ‘in’ set and the ‘cc’ set, respectively,
whose elements are accumulated from all the rounds. Edges
in other cases are emitted to the ‘out’ set, which becomes the
input of the next round. The union of the ‘in’ set, the ‘cc’
set, and the ‘out’ set of the final round becomes the input
of the CC-Computation operation which computes connected
components in each subgraph. The data-flow of PACC-opt is
depicted in Figure 6.

The MapReduce version pseudo code of PA-large-star and
PA-small-star with the edge-filtering (namely PA-large-star-
opt and PA-small-star-opt) are listed in Algorithms 5 and 6,
respectively. Edges of the case 1 are filtered in PA-small-
star-opt. Given a node u, PA-small-star-opt links each small



Algorithm 5: PA-large-star-opt

Algorithm 7: PACC-opt

Map : input (u;v)
1 emit (u;v) and (v;u)

Reduce : input (u;I'(u))
if u =m(u) and T'(v) = {u} Vv € I'(u) then

M)

3 foreach v € 't (u) do

4 | emit (v;u) to lce

5 else

6 foreach v € ' (u) do

7 if v # mg(y)(u) then

8 | emit (v;me(y)(u)) to lout
9 else if v # m(u) then

10 | emit (v;m(u)) to lout

Algorithm 6: PA-small-star-opt

Map ¢ input (u; v)
1 emit (u;v) and (v;u)

Reduce : input (u; I'(u))

2 foreach v € I'™ (u) U {u} do

3 if v 7# Mg (y)(u) then

4 if v =u and Tt (u) = () then

5 | emit (v;me(y)(u)) to sin

6 else

7 | emit (v;me(y)(u)) to sout

8 else if v # m(u) then

9 add a tag to v if v = w and TF (u) = 0
10 | emit (v;m(u)) to sout

neighbor v € T'"(u) of w and w itself to the local mini-
mum node myg(,)(u). Then, if u # me(,(u) and u has no
large neighbors, the neighbor set of u after PA-small-star-
opt becomes {m¢(,)(u)}. In this case (i.e., u # mg(y)(u)
and 't (u) = (), PA-small-star-opt outputs (u,mg(,)(u))
separately (to sin at line 5 of Algorithm 6), and excludes this
edge from the input of the next round. Edges of the case 2 are
filtered in PA-large-star-opt. Given a node u, PA-large-star-opt
gathers all the neighbors I'(u) of w, and thus we can easily
know whether u has a small neighbor or not by comparing u
and m(u): u = m(u) means u has no small neighbor. For each
neighbor v of u, PA-large-star-opt sees whether I'(v) = {u}
by checking the existence of a tag of the edge (v,u) which
we attach in PA-small-star-opt of the previous round if v has
no large neighbor (line 9 of Algorithm 6).

The edge-filtering not only decreases the amount of data
to read and write, but also drastically reduces the number of
edges to the point where the input edges can be processed
by a single machine. This enables an additional optimization:
PACC-opt replaces several MapReduce rounds with one round
of a single machine algorithm (LocalCC) when the input size
is small enough, that is, smaller than a threshold 7. This
optimization saves preparation time for multiple rounds. The
pseudo code for PACC-opt is listed in Algorithm 7. As in CC-
Computation, we use a Union-Find algorithm for LocalCC in
our experiments.

Input: Edges (u,v) as a set E of key-value pairs (u;v)

Output: A unique connected component id for every node v € V'
1 out +— FE

2 in <+ 0

3 cc+ 0

4 repeat

5 if # edges in out > 7 then
6 (lout, lcc) < PA-large-star-opt(out)

7 cc + ccUlce

8 (sout, sin) <— PA-small-star-opt(lout)
9 out < sout

10 in < in U sin

11 else
12 L out <+ LocalCC(out)

13 until Convergence;
14 return CC-Computation(out U in U cc)

C. Analysis
We first prove the correctness of PACC-opt.

Lemma 5. PACC-opt correctly finds all connected compo-
nents.

Proof. The input of the CC-Computation operation is the
union of the ‘in’ set, the ‘cc’ set, and the ‘out’ set of the
final round. As shown in Lemma 4, the ‘in’ set contains
only tree graphs where the root of each tree graph is a local
minimum node of the corresponding connected component.
In the ‘cc’ set and the ‘out’ set of the final round, the local
minimum nodes of the connected components are connected
to the global minimum nodes as proved in Lemma 2. Thus,
as the union of the ‘in’ set and the ‘out’ set of the final round
forms tree graphs whose root nodes are the global minimum
nodes, each node is reachable from the global minimum node
in the same connected component. Note that, every edge in
the ‘in’ set does not cross partitions by the definition of case
1. Each subgraph processed by CC-Computation is an induced
subgraph on the nodes in a partition and their small neighbors.
It implies that each subgraph contains the global minimum
nodes, which are linked to the local minimum nodes, and
thus CC-Computation correctly finds connected components
in each subgraph independently. O

We now prove an upper bound on the input size of the
CC-Computation.

Lemma 6. The number of input edges of CC-Computation in
PACC-opt is not larger than |V | — 1 where |V| is the number
of nodes.

Proof. As shown in the proof of Lemma 5, the input of CC-
Computation forms a set of tree graphs. Thus, the number of
edges is not larger than |V| — 1. Accordingly, the expected
number of edges in each subgraph is (|V| — 1)/p when the
hash function ¢ evenly distributes the nodes into partitions. [

Lemma 7. PA-large-star and PA-small-star operations do not
increase the number of edges.

Proof. Without loss of generality, let us assume uv < v in
every edge (v,u) € E. Then, it is trivial to show that PA-
large-star and PA-small-star do not duplicate any edge because



TABLE II: The summary of datasets.

Dataset V| |E| Source
Skitter (SK) 1,696,415 11,095,298 SNAP!
Patent (PT) 3,774,768 16,518,948 SNAP
LiveJournal (L) 4,847,571 68,993,773 SNAP
Friendster (FS) 65,608,366 1,806,067,135 SNAP
Twitter (TW) 41,652,230 1,468,365,182 Kwak et al.2 [29]
SubDomain (SD) 89,247,739 2,043,203,933 Webscope?
YahooWeb (YW) 720,242,173 6,636,600,779 Webscope
RMAT 21 1,115,331 31,457,280
RMAT 23 4,118,887 125,829,120 N/A
RMAT 25 15,215,025 503,316,480 (Synthetic
RMAT 27 56,101,382 2,013,265,920 graphs)

RMAT 29 207,015,915 8,053,063,680

they just replace each edge with another edge. PA-large-star
replaces an edge (v, u) with (v, m(u)) or (v, me(y)(u)). Sim-
ilarly, PA-small-star replaces an edge (v,u) with (u, m(v)),
(u, Mgy (v)), or (v,u). O

V. EXPERIMENTS
In this section, we experimentally evaluate PACC. We aim
to answer the following questions.

Q1 Effect of Partitioning (Section V-B1). How well does
the node-partitioning (in Section IV-A) evenly distribute
workloads?

Q2 Effect of Edge-Filtering (Section V-B2). How much
does the edge-filtering (in Section IV-B) reduce the
number of input edges?

Q3 Scalability (Section V-B3). How does PACC scale up in
terms of the number of machines and the data size?

We first introduce datasets and experimental environments
in Section V-A. Then, we answer the questions in Section V-B
presenting the experimental results.

A. Setup

1) Datsets: We use both real world and synthetic graphs
to evaluate the proposed algorithm. We bring the real world
graphs from various sources. The datasets and the sources
are listed in Table II. Skitter is an internet topology graph.
Patent is a citation network among US patents. LiveJournal
and Friendster are friendship networks in online communities
of the same names. Twitter is a follower-followee network
in a social network service Twitter. SubDomain and Ya-
hooWeb are hyperlink networks of domain level and page
level, respectively. Also, we generate synthetic graphs with
different number of nodes and edges using RMAT [30], which
is a widely-used model for generating graphs that match
the characteristics of real-world networks, such as power-law
degree distribution and community structure, with a recursive
and random process. We set the four RMAT parameters
(a,b,c,d) to (0.57,0.19,0.19,0.05), and use TeGViz [24],
a distributed graph generator, to generate large-scale RMAT
graphs that exceed the capacity of a single machine. Note
that we assume all the graphs are undirected even if they are
originally directed; if there are two edges (u,v) and (v,u),

Thttp://snap.stanford.edu/data/
Zhttp://an kaist.ac.kr/traces/ WWW2010.html
3http://webscope.sandbox.yahoo.com

we consider that they are the same and remove one of them
at the beginning of each algorithm.

2) Environment: We implement PACC-base (in Sec-
tion IV-A), PACC-opt (in Section IV-B), the alternating al-
gorithm (Alt), and its optimized version (Alt-opt), on Hadoop
which is the de facto standard implementation of MapReduce.
For the threshold parameter 7 of PACC-opt, 20M and 0
are used to show the effect of the LocalCC optimization.
The number p of partitions for PACC-base, PACC-opt, and
the optimized alternating algorithms is set to the number of
used reducers; 100 unless otherwise stated. We use a cluster
server with 41 machines for the experiments. Each machine
is equipped with an Intel Xeon E3-1230v3 CPU (quad-core at
3.30GHz), and 32GB RAM. Hadoop v1.2.1 is installed on the
cluster with 1 master machine and 40 slave machines. Each
slave machine can run 3 mappers and 3 reducers (120 mappers
and 120 reducers in total) concurrently. The available memory
size for each mapper and reducer is set to 4GB.

B. Results

1) Effect of Partitioning: In order to show the effect of
partitioning, we present a box-and-whisker plot of the run-
ning time of reducers in each round of PACC-base, PACC-
opt (r = 0), the alternating, and the optimized alternating
algorithms in Figure 7. We only show the result on the
YahooWeb graph because results on other graphs have similar
trends. The last round of PACC-base and PACC-opt is for
CC-Computation, and that of Alt-opt is for the finalization.
We exclude the running time of mappers because they are
load-balanced well in any cases. The bottom and the top
of each box are the first and the third quartile, respectively,
and the ends of whiskers represent the maximum and the
minimum. A long whisker implies a bad load-balancing as a
few reducers take much longer time than others. In the figure,
PACC-base and PACC-opt show the best load-balancing with
very short whiskers regardless of the rounds. The optimized
alternating algorithm also reduces the lengths of whiskers from
the alternating algorithm, but they are longer than those of
PACC-base and PACC-opt. Note that, the running time of
PACC-opt dramatically decreases in each round, thanks to the
reduced input size by the edge-filtering.
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Fig. 7: A box-and-whisker plot of the running time of reducers
in each round on YahooWeb. In PACC-base and PACC-opt,
reducers take similar time regardless of the rounds.
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Fig. 8: The number of input edges of PACC-base, PACC-opt,
the alternating, and the optimized alternating on the YahooWeb
graph at each round. While the number of input edges of the
other algorithms does not decrease below the number of nodes,
that of PACC-opt decreases, and almost hits the lower bound,
i.e. the number of modified edges.
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Fig. 9: The running time vs. 7. PACC-opt shows the best
performance with 7 = 200M.
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2) Effect of Edge-Filtering: Figure 8 shows the number
of input edges in each round of PACC-base, PACC-opt, the
alternating, and the optimized alternating algorithms on the
YahooWeb graph. While the input size of the other algorithms
does not decrease under a point (the number of non-root
nodes), that of PACC-opt rapidly decreases. The solid and
dashed lines represent the number of edges modified by PA-
large-star and PA-small-star, respectively; the upper solid line
(PA-large-star) is the lower-bound of the input size as an
edge to be modified should be in the input at that round.
The input size of PACC-opt is very close to the lower-bound.
Vertical bars with the two colors represent the number of
edges excluded by the cases 1 and 2 in Section IV-B; that
is, the number of edges output to the ‘in’ set and the ‘cc’ set,
respectively, at that round. Edges are mainly filtered by the
case 1, but the case 2 is not negligible. The reduced number
of input edges effectively reduces the running time as shown
in Figure 7.

To show the effect of the threshold 7, Figure 9 presents
the running time of PACC-opt with the threshold 7 varying
from 200 to 2 billion on Twitter. PACC-opt shows the best
performance with 7 = 200M. When 7 = 2 billion, LocalCC
gets the entire Twitter graph as the input; then the total running
time is dominated by that of the single machine algorithm,
LocalCC.
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Fig. 10: The running time of PACC-base, PACC-opt, the
alternating, and the optimized alternating on RMAT graphs
with various sizes. PACC-opt with 7 = 0 exhibits the best
scalability with the increase of graph size while PACC-opt
with 7 = 20M requires the shortest running time in all cases.
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Fig. 11: Machine-scalability. The running time of PACC-base,
PACC-opt, the alternating, and the optimized alternating on
Twitter with varying number of machines. All three PACC
variants scale up better with the increase of the number of
machines than the alternating algorithms.

3) Scalability: Figure 10 shows the running time of PACC-
base, PACC-opt, the alternating, and the optimized alternating
algorithms on RMAT graphs with various sizes. Among PACC
variants, PACC-opt with 7=0 exhibits the best scalability:
while in general the performance of all three PACC variants
scales up near linearly with the increase of graph size, the rate
of increase in the running time of PACC-opt with 7=0 is the
smallest among all tested algorithms. However, the running
time of the alternating algorithm increases more rapidly than
that of PACC-opt with 7=0 due to poor load-balancing, and is
the greatest on RMAT 29 graph.

Figure 11 presents the machine scalability of the tested
algorithms, showing the running time of each algorithm on
Twitter with various numbers of machines. Both X and Y
axes are in a log scale. The slope of each line represents the
machine scalability of each algorithm: the lower the slope is,
the better the machine scalability is. PACC-opt shows the best
machine scalability (slope = —0.56) followed by PACC-base
and Alt-opt. The alternating algorithm has the worst machine
scalability (slope > —0.31), and the main reason is the bad
load-balancing; workloads are focused on few machines and
the amount of work those machines take does not change much
even if the number of machines increases.
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Fig. 12: The number of rounds required by PACC-base, PACC-
opt, the alternating, and the optimized alternating algorithm on
various real world graphs in Table II. PACC-opt with 7 = 20M
requires the smallest number of rounds in all cases.

4) Results on Real-World Graphs: We test PACC-base,
PACC-opt, the alternating, and its optimized version on various
real world graphs. Figure 1 shows the speedup over the
optimized alternating algorithm on seven real world graphs.
The proposed algorithm PACC-opt with 7=20M shows the best
performance on all graphs, and it shows up to 10 times faster
performance than the optimized alternating algorithm on the
Patent graph. The number of rounds taken by each algorithm is
presented in Figure 12. PACC-opt with 7=20M takes the least
number of rounds among the used algorithms, and this is due
to the edge-filtering and the thresholding. PACC-opt reduces
the number of input edges dramatically in each round, which
becomes smaller than 20M before the 6-th round on every
graph. Even though PACC-opt with 7=0 takes the most rounds,
it shows similar performance as PACC-opt with 7=20M on
large graphs thanks to the reduced number of edges in each
round; as shown in Figure 8, each round of PACC-opt takes
much shorter time than the other algorithms.

FS Tw SD

VI. CONCLUSION

In this paper, we propose PACC, a scalable distributed al-
gorithm for computing connected components in an enormous
graph. PACC gets performance improvement from evenly
distributing workloads by partitioning nodes, and minimizing
the intermediate data size and the number of rounds by filtering
unnecessary edges. PACC shows the best performance on real
world graphs: it provides up to 10x faster performance than
the current state-of-the-art MapReduce algorithm. Future work
includes extending the method for other graph algorithms
including subgraph enumeration.
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