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Abstract—How can we analyze tensors that are composed of
0’s and 1’s? How can we efficiently analyze such Boolean tensors
with millions or even billions of entries? Boolean tensors often
represent relationship, membership, or occurrences of events
such as subject-relation-object tuples in knowledge base data
(e.g., ‘Seoul’-‘is the capital of’-‘South Korea’). Boolean tensor
factorization (BTF) is a useful tool for analyzing binary tensors
to discover latent factors from them. Furthermore, BTF is known
to produce more interpretable and sparser results than normal
factorization methods. Although several BTF algorithms exist,
they do not scale up for large-scale Boolean tensors.

In this paper, we propose DBTF, a distributed algorithm for
Boolean tensor factorization running on the Spark framework.
By caching computation results, exploiting the characteristics
of Boolean operations, and with careful partitioning, DBTF
successfully tackles the high computational costs and minimizes
the intermediate data. Experimental results show that DBTF
decomposes up to 163–323× larger tensors than existing methods
in 68–382× less time, and exhibits near-linear scalability in terms
of tensor dimensionality, density, rank, and machines.

I. INTRODUCTION

How can we analyze tensors that are composed of 0’s and
1’s? How can we efficiently analyze such Boolean tensors
that have millions or even billions of entries? Many real-
world data can be represented as tensors, or multi-dimensional
arrays. Among them, many are composed of only either 0 or
1. Those tensors often represent relationship, membership, or
occurrences of events. Examples of such data include subject-
relation-object tuples in knowledge base data (e.g., ‘Seoul’-
‘is the capital of’-‘South Korea’), source IP-destination IP-
port number-timestamp in network intrusion logs, and user1
ID-user2 ID-timestamp in friendship network data. Tensor
factorizations are widely-used tools for analyzing tensors.
CANDECOMP/PARAFAC (CP) and Tucker are two major
tensor factorization methods [1]. These methods decompose a
tensor into a sum of rank-1 tensors, from which we can find the
latent structure of the data. Tensor factorization methods can
be classified according to the constraint placed on the resulting
rank-1 tensors [2]. The unconstrained form allows entries in
the rank-1 tensors to be arbitrary real numbers, where we
find linear relationships between latent factors; when a non-
negativity constraint is imposed on the entries, the resulting
factors reveal parts-of-whole relationships.

What we focus on in this paper is yet another approach
with Boolean constraints, named Boolean tensor factorization
(BTF) [3], that has many interesting applications including

TABLE I: Comparison of the scalability of our proposed DBTF and
existing methods for Boolean tensor factorization. The scalability
bottlenecks are colored red. As the only distributed approach, DBTF
exhibits high scalability across all aspects of dimensionality, density,
and rank; on the other hand, other methods show limited scalability
for some aspects.

Method Dimensionality Density Rank Distributed

Walk’n’Merge [2] Low Low High No
BCP ALS [3] Low High High No

DBTF High High High Yes

clustering, latent concept discovery, synonym finding, recom-
mendation, and link prediction. BTF requires that the input
tensor and all factor matrices be binary. Furthermore, BTF
uses Boolean sum instead of normal addition, which means
1+1 = 1 in BTF. When the data is binary, BTF is an appealing
choice as it can reveal Boolean structures and relationships
underlying the binary tensor that are hard to be found by
other factorizations. Also, BTF is known to produce more
interpretable and sparser results than the unconstrained and
the non-negativity constrained counterparts, though at the ex-
pense of increased computational complexity [3], [4]. Several
algorithms have been developed for BTF [3], [2], [5], [6].
While their scalability varies, they are not scalable enough for
large-scale tensors with millions or even billions of non-zeros
that have become widespread. The major challenges that need
to be tackled for fast and scalable BTF are 1) how to minimize
the computational costs involved with updating Boolean factor
matrices, and 2) how to minimize the intermediate data that
are generated in the process of factorization. Existing methods
fail to solve both of these challenges.

In this paper, we propose DBTF (Distributed Boolean
Tensor Factorization), a distributed algorithm for Boolean
CP factorization running on the Spark framework. DBTF
tackles the high computational cost by utilizing caching in an
efficient greedy algorithm for updating factor matrices, while
minimizing the generation and shuffling of intermediate data.
Also, DBTF exploits the characteristics of Boolean operations
in solving both of the above problems. Due to the effective
algorithm designed carefully with these ideas, DBTF achieves
higher efficiency and scalability compared to existing methods.
Table I shows a comparison of the scalability of DBTF and
existing methods.

The main contributions of this paper are as follows:
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Fig. 1: The scalability of DBTF and other methods with respect to the dimensionality, density, and rank of a tensor. o.o.t.: out of time (takes
more than 6 hours). DBTF decomposes up to 163–323× larger tensors than existing methods in 68–382× less time (Figure 1(a)). Overall,
DBTF achieves 13–716× speed-up, and exhibits near-linear scalability with regard to all data aspects.

• Algorithm. We propose DBTF, a distributed algorithm
for Boolean CP factorization, which is designed to scale
up to large tensors by minimizing intermediate data,
caching computation results, and carefully partitioning
the workload.

• Theory. We provide an analysis of the proposed algo-
rithm in terms of time complexity, memory requirement,
and the amount of shuffled data.

• Experiment. We present extensive empirical evidences
for the scalability and performance of DBTF. The ex-
perimental results show that the proposed method de-
composes up to 163–323× larger tensors than existing
methods in 68–382× less time, as shown in Figure 1.

The binary code of our method and datasets used in this
paper are available at http://datalab.snu.ac.kr/dbtf. The rest
of the paper is organized as follows. Section II presents the
preliminaries for the normal and Boolean CP factorizations.
In Section III, we describe our proposed method for fast
and scalable Boolean CP factorization. Section IV presents
the experimental results. After reviewing related works in
Section V, we conclude in Section VI.

II. PRELIMINARIES

In this section, we present the notations and operations used
for tensor decomposition, and define the normal and Boolean
CP decompositions, After that, we introduce approaches for
computing Boolean CP decomposition. Table II lists the defi-
nitions of symbols used in the paper.

A. Notation

We denote tensors by boldface Euler script letters (e.g., X),
matrices by boldface capitals (e.g., A), vectors by boldface
lowercase letters (e.g., a), and scalars by lowercase letters
(e.g., a).
Tensor. Tensor is a multi-dimensional array. The dimension
of a tensor is also referred to as mode or way. A tensor
X ∈ RI1×I2×···×IN is an N -mode or N -way tensor. The
(i1, i2, · · · , iN )-th entry of a tensor X is denoted by xi1i2···iN .
A colon in the subscript indicates taking all elements of that
mode. For a three-way tensor X, x:jk, xi:k, and xij: denote
column (mode-1), row (mode-2), and tube (mode-3) fibers,

TABLE II: Table of symbols.

Symbol Definition

X tensor (Euler script, bold letter)
A matrix (uppercase, bold letter)
a column vector (lowercase, bold letter)
a scalar (lowercase, italic letter)
R rank (number of components)

X(n) mode-n matricization of a tensor X
|X| number of non-zeros in the tensor X
‖X‖ Frobenius norm of the tensor X
AT transpose of matrix A
◦ outer product
⊗ Kronecker product
� Khatri-Rao product
~ pointwise vector-matrix product
B set of binary numbers, i.e., {0, 1}
∨ Boolean sum of two binary tensors∨

Boolean summation of a sequence of binary tensors
� Boolean matrix product

I , J , K dimensions of each mode of an input tensor X

respectively. |X| denotes the number of non-zero elements in
a tensor X; ‖X‖ denotes the Frobenius norm of a tensor X,
and is defined as

√∑
i,j,k x

2
ijk.

Tensor Matricization/Unfolding. The mode-n matricization
(or unfolding) of a tensor X ∈ RI1×I2×···×IN , denoted
by X(n), is the process of unfolding X into a matrix by
rearranging its mode-n fibers to be the columns of the resulting
matrix. For instance, a three-way tensor X ∈ RI×J×K and its
matricizations are mapped as follows:

xijk → [X(1)]ic where c = j + (k − 1)J

xijk → [X(2)]jc where c = i+ (k − 1)I

xijk → [X(3)]kc where c = i+ (j − 1)I.

(1)

Outer Product and Rank-1 Tensor. We use ◦ to denote the
vector outer product. The three-way outer product of vectors
a ∈ RI ,b ∈ RJ , and c ∈ RK , is a tensor X = a ◦ b ◦ c ∈
RI×J×K whose element (i, j, k) is defined as (a ◦b ◦ c)ijk =
aibjck. A three-way tensor X is rank-1 if it can be expressed
as an outer product of three vectors.
Kronecker Product. The Kronecker product of matrices A ∈
RI1×J1 and B ∈ RI2×J2 produces a matrix of size I1I2-by-
J1J2, which is defined as:

http://datalab.snu.ac.kr/dbtf


A⊗B =


a11B a12B · · · a1J1

B
a21B a22B · · · a2J1

B
...

...
. . .

...
aI11B aI12B · · · aI1J1B

 . (2)

Khatri-Rao Product. The Khatri-Rao product (or column-
wise Kronecker product) of matrices A and B that have the
same number of columns, say R, is defined as:

A�B = [a:1 ⊗ b:1 a:2 ⊗ b:2 · · · a:R ⊗ b:R]. (3)

If the sizes of A and B are I-by-R and J-by-R, respectively,
that of A�B is IJ-by-R.
Pointwise Vector-Matrix Product. We define the pointwise
vector-matrix product of a row vector a ∈ RR and a matrix
B ∈ RJ×R as:

a~B = [a1b:1 a2b:2 · · · aRb:R]. (4)

Set of Binary Numbers. We use B to denote the set of binary
numbers, that is, {0, 1}.
Boolean Summation. We use

∨
to denote the Boolean sum-

mation, in which a sequence of Boolean tensors or matrices
are summed. The Boolean sum (∨) of two binary tensors
X ∈ BI×J×K and Y ∈ BI×J×K , is defined by:

(X ∨ Y)ijk = xijk ∨ yijk. (5)

The Boolean sum of two binary matrices is defined analo-
gously.
Boolean Matrix Product. The Boolean product of two binary
matrices A ∈ BI×R and B ∈ BR×J is defined as:

(A�B)ij =

R∨
k=1

aikbkj . (6)

B. Tensor Rank and Decomposition

1) Normal Tensor Rank and CP Decomposition: With the
above notations, we first define the normal tensor rank and CP
decomposition.

Definition 1. (Tensor rank) The rank of a three-way tensor X
is the smallest integer R such that there exist R rank-1 tensors
whose sum is equal to the tensor X, i.e.,

X =

R∑
i=1

ai ◦ bi ◦ ci. (7)

Definition 2. (CP decomposition) Given a tensor X ∈
RI×J×K and a rank R, find factor matrices A ∈ RI×R,
B ∈ RJ×R, and C ∈ RK×R such that they minimize∥∥∥∥∥X−

R∑
i=1

ai ◦ bi ◦ ci

∥∥∥∥∥ . (8)

CP decomposition can be expressed in a matricized form as
follows [1]:

X(1) ≈ A(C�B)T

X(2) ≈ B(C�A)T

X(3) ≈ C(B�A)T .

(9)

2) Boolean Tensor Rank and CP Decomposition: We now
define the Boolean tensor rank and CP decomposition. The
definitions of Boolean tensor rank and CP decomposition
differ from their normal counterparts in the following two
respects: 1) the tensor and factor matrices are binary; 2)
Boolean sum is used where 1 + 1 is defined to be 1.

Definition 3. (Boolean tensor rank) The Boolean rank of a
three-way binary tensor X is the smallest integer R such that
there exist R rank-1 binary tensors whose Boolean summation
is equal to the tensor X, i.e.,

X =

R∨
i=1

ai ◦ bi ◦ ci. (10)

Definition 4. (Boolean CP decomposition) Given a binary
tensor X ∈ BI×J×K and a rank R, find binary factor matrices
A ∈ BI×R, B ∈ BJ×R, and C ∈ BK×R such that they
minimize ∣∣∣∣∣X−

R∨
i=1

ai ◦ bi ◦ ci

∣∣∣∣∣ . (11)

Boolean CP decomposition can be expressed in matricized
form as follows [3]:

X(1) ≈ A� (C�B)T

X(2) ≈ B� (C�A)T

X(3) ≈ C� (B�A)T .

(12)

Figure 2 illustrates the rank-R Boolean CP decomposition of
a three-way tensor.
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Fig. 2: Rank-R Boolean CP decomposition of a three-way tensor X.
X is decomposed into three Boolean factor matrices A, B, and C.

Computing the Boolean CP Decomposition. The alternating
least squares (ALS) algorithm is the “workhorse” approach
for normal CP decomposition [1]. With a few changes, ALS
projection heuristic provides a framework for computing the
Boolean CP decomposition as shown in Algorithm 1.

The framework in Algorithm 1 is composed of two parts:
first, the initialization of factor matrices (line 1), and second,
the iterative update of each factor matrix in turn (lines 3-5). At
each step of the iterative update phase, the n-th factor matrix is
updated given the mode-n matricization of the input tensor X
with the goal of minimizing the difference between the input



Algorithm 1: Boolean CP Decomposition Framework
Input: A three-way binary tensor X ∈ BI×J×K , rank R,

and maximum iterations T .
Output: Binary factor matrices A ∈ BI×R, B ∈ BJ×R, and

C ∈ BK×R.
1 initialize factor matrices A, B, and C
2 for t← 1..T do
3 update A such that |X(1) −A� (C�B)T | is

minimized
4 update B such that |X(2)−B� (C�A)T | is minimized
5 update C such that |X(3)−C� (B�A)T | is minimized
6 if converged then
7 break out of for loop

8 return A, B, and C

tensor X and the approximate tensor reconstructed from the
factor matrices, while the other factor matrices are fixed.

The convergence criterion for Algorithm 1 is either one
of the following: 1) the number of iterations exceeds the
maximum value T , or 2) the sum of absolute differences
between the input tensor and the reconstructed one does not
change significantly for two consecutive iterations (i.e., the
difference between the two errors is within a small threshold).

Using the above framework, Miettinen [3] proposed a
Boolean CP decomposition method named BCP ALS. How-
ever, since BCP ALS is designed to run on a single machine,
the scalability and performance of BCP ALS are limited by
the computing and memory capacity of a single machine. Also,
the initialization scheme used in BCP ALS has high space and
time requirements which are proportional to the squares of
the number of columns of each unfolded tensor. Due to these
limitations, BCP ALS cannot scale up to large-scale tensors.
Walk’n’Merge [2] is a different approach for Boolean tensor
factorization: representing the tensor as a graph, Walk’n’Merge
performs random walks on it to identify dense blocks (rank-1
tensors), and merge these blocks to get larger, yet dense blocks.
While Walk’n’Merge is a parallel algorithm, its scalability is
still limited. Since it is not a distributed method, Walk’n’Merge
suffers from the same limitations of a single machine. Also, as
the size of tensor increases, the running time of Walk’n’Merge
rapidly increases as we show in Section IV-B.

III. PROPOSED METHOD

In this section, we describe DBTF, our proposed method
for distributed Boolean tensor factorization. There are several
challenges to efficiently perform Boolean tensor factorization
in a distributed environment.

1) Minimize intermediate data. The amount of intermedi-
ate data that are generated and shuffled across machines
affects the performance of a distributed algorithm signif-
icantly. How can we minimize the intermediate data?

2) Minimize flops. Boolean tensor factorization is an NP-
hard problem [3] with a high computational cost. How
can we minimize the number of floating point operations
(flops) for updating factor matrices?

3) Exploit the characteristics of Boolean operations.
In contrast to the normal tensor factorization, Boolean

tensor factorization applies Boolean operations to binary
data. How can we exploit the characteristics of Boolean
operations to design an efficient and scalable algorithm?

We address the above challenges with the following main
ideas, which we describe in later subsections.

1) Distributed generation and minimal transfer of in-
termediate data remove redundant data generation and
reduce the amount of data transfer. (Section III-B).

2) Caching intermediate computation results decreases
the number of flops remarkably by exploiting the char-
acteristics of Boolean operations. (Section III-C).

3) Careful partitioning of the workload facilitates reuse
of intermediate results and minimizes data shuffling.
(Section III-D).

We first give an overview of how DBTF updates the factor
matrices (Section III-A), and then describe how we address the
aforementioned scalability challenges in detail (Sections III-B
to III-D). After that, we give a theoretical analysis of DBTF
(Section III-G).
A. Overview

DBTF is a distributed Boolean CP decomposition algorithm
based on the framework described in Algorithm 1. The core
operation of DBTF is updating the factor matrix (lines 3-5
in Algorithm 1). Since the update steps are similar, we focus
on updating the factor matrix A. DBTF performs a column-
wise update row by row: DBTF iterates over the rows of
factor matrix for R column (outer)-iterations in total, updating
column c (1 ≤ c ≤ R) of each row at column-iteration c.
Figure 3 shows an overview of how DBTF updates a factor
matrix. In Figure 3, the red rectangle indicates the column c
currently being updated, and the gray rectangle in A refers to
the row DBTF is visiting in row (inner)-iteration i.

The objective of updating the factor matrix is to minimize
the difference between X(1) and A � (C � B)T . To do so,

Partition1 Partition2 Partition3

Partition3Partition1 Partition2

0 1 0 1

⊠

𝑨 ∈ 𝔹%×'

𝑿(*) ∈ 𝔹%×,-

(𝑪⊙ 𝑩)1∈ 𝔹'×,-

𝑖

𝑖

𝑅

Fig. 3: An overview of updating a factor matrix. DBTF performs
a column-wise update row by row: DBTF iterates over the rows
of factor matrix for R column (outer)-iterations in total, updating
column c (1 ≤ c ≤ R) of each row at column-iteration c. The
red rectangle in A indicates the column c currently being updated;
the gray rectangle in A refers to the row DBTF is visiting in row
(inner)-iteration i; blue rectangles in (C�B)T are the rows that are
Boolean summed to be compared against the i-th row of X(1) (gray
rectangle in X(1)). Vertical blocks in (C�B)T and X(1) represent
partitioning of the data (see Section III-D for details on partitioning).



DBTF computes
∣∣X(1) −A� (C�B)T

∣∣ for combinations
of values of entries in column c (i.e., a:c) and updates column c
to the set of values that yields the smallest difference. To calcu-
late the difference at row-iteration i, DBTF compares [X(1)]i:
(gray rectangle in X(1) in Figure 3) against [A�(C�B)T ]i: =
ai:� (C�B)T . Then an entry aic is updated to the value that
gives a smaller difference

∣∣[X(1)]i:−ai:�(C�B)T
∣∣.

Lemma 1. ai: � (C�B)T is the same as selecting rows of
(C�B)T that correspond to the indices of non-zeros of ai:,
and performing a Boolean summation of those rows.

Proof. This follows from the definition of Boolean matrix
product � (Equation 6).

Consider Figure 3 as an example: since ai: is 0101 (gray
rectangle in A), ai: � (C � B)T is identical to the Boolean
summation of the second and fourth rows (blue rectangles).

Note that an update of the i-th row of A does not depend
on those of other rows since ai: � (C � B)T needs to be
compared only with [X(1)]i:. Therefore, the determination of
whether to update column entries in A to 0 or 1 can be made
independently of each other.

B. Distributed Generation and Minimal Transfer of Interme-
diate Data

The first challenge for updating a factor matrix in a dis-
tributed manner is how to generate and distribute the interme-
diate data efficiently. Updating a factor matrix involves two
types of intermediate data: 1) a Khatri-Rao product of two
factor matrices (e.g., (C � B)T ), and 2) an unfolded tensor
(e.g., X(1)).

Khatri-Rao Product. A naive method for processing the
Khatri-Rao product is to construct the entire Khatri-Rao prod-
uct first, and then distribute its partitions across machines.
While Boolean factors are known to be sparser than the
normal counterparts with real-valued entries [4], performing
the entire Khatri-Rao product is still an expensive operation.
Also, since one of the two matrices involved in the Khatri-Rao
product is always updated in the previous update procedure
(Algorithm 1), prior Khatri-Rao products cannot be reused.
Our idea is to distribute only the factor matrices, and then let
each machine generate the part of the product it needs, which
is possible according to the definition of Khatri-Rao product:

A�B =


a11b:1 a12b:2 · · · a1Rb:R

a21b:1 a22b:2 · · · a2Rb:R

...
...

. . .
...

aI1b:1 aI2b:2 · · · aIRb:R

 . (13)

We notice from Equation (13) that a specific range of rows
of Khatri-Rao product can be constructed if we have the two
factor matrices and the corresponding range of row indices.
With this change, we only need to broadcast relatively small
factor matrices A, B, and C along with the index ranges
assigned for each machine without having to materialize the
entire Khatri-Rao product.

Unfolded Tensor. While the Khatri-Rao products are com-
puted iteratively, matricizations of an input tensor need to

⊠
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-
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a<: ∧ c7:	is	a	key	
to	the	cache	table

Fig. 4: An overview of caching. Blue rectangles in (C � B)T

correspond to K pointwise vector-matrix products, among which
(cj:~B)T is shown in detail. BT is a unit of caching: combinations
of its row summations are cached in a table. ai: ∧ cj: determines
which rows are to be used for the row summation of (cj:~B)T . For
large R, rows of BT are split into multiple, smaller groups, each of
which is cached separately.

be performed only once. However, in contrast to the Khatri-
Rao product, we cannot avoid shuffling the entire unfolded
tensor as we have no characteristics to exploit as in the case
of Khatri-Rao product. Furthermore, unfolded tensors take up
the largest space during the execution of DBTF. In particular,
its row dimension quickly becomes very large as the sizes of
factor matrices increase. Therefore, we partition the unfolded
tensors in the beginning, and do not shuffle them afterwards.
We do vertical partitioning of both the Khatri-Rao product and
unfolded tensors as shown in Figure 3 (see Section III-D for
more details on partitioning).

C. Caching of Intermediate Computation Results

The second and the most important challenge for efficient
and scalable Boolean tensor factorization is how to minimize
the number of floating point operations (flops) for updating
factor matrices. In this subsection, we describe the problem in
detail, and present our solution.

Problem. Given our procedure to update factor matrices
(Section III-A), the two most frequent operations are 1)
computing the Boolean sums of selected rows of (C �B)T ,
and 2) comparing the resulting row with the corresponding
row of X(1). Assuming that all factor matrices are of the same
size, I-by-R, these operations take O(RI2) and O(I2) time,
respectively. Since we compute the errors for both cases of
when each factor matrix entry is set to 0 and 1, each operation
needs to be performed 2RI times to update a factor matrix
of size I-by-R; then, updating all three factor matrices for T
iterations performs each operation 6TRI times in total. Due to
high computational costs and a large number of repetitions, it
is crucial to minimize the number of flops for these operations.

Our Solution. We start from the following observations:
• By Lemma 1, DBTF computes the Boolean sum of

selected rows in (C�B)T . This amounts to performing
a specific set of operations repeatedly, which we describe
below.



• Given the rank R, the number of combinations of select-
ing rows in (C�B)T is 2R.

Our main idea is to precompute the set of operations that
will be performed repeatedly, cache the results, and reuse
them for all possible Boolean row summations. Figure 4 gives
an overview of our idea for caching. We note that from the
definitions of the Khatri-Rao (Equation (3)) and the pointwise
vector-matrix product (Equation (4)),

(C�B)T = [(c1: ~B)T (c2: ~B)T · · · (cK: ~B)T ].

In Figure 4, blue rectangles in (C � B)T correspond to
K pointwise vector-matrix (PVM) products. Since a row of
(C�B)T is made up of a sequence of K corresponding rows
of PVM products, (c1: ~B)T , . . . , (cK: ~B)T , the Boolean
sum of selected rows of (C � B)T can be constructed by
summing up the same set of rows in each PVM product, and
concatenating the resulting rows into a single row.

Given that the row ai: is being updated as in Figure 4,
we notice that computing Boolean row summations of each
(cj: ~B)T amounts to summing up the rows in BT that are
selected by the next two conditions. First, we choose all those
rows of BT whose corresponding entries in cj: are 1. Since
all other rows are empty vectors by the definition of Khatri-
Rao product, they can be ignored in computing Boolean row
summations. Second, we pick the set of rows from each (cj:~
B)T selected by the value of row ai: as they are the targets
of Boolean summation. Therefore, the value of Boolean AND
(∧) between the rows ai: and cj: determines which rows are
to be used for the row summation of (cj: ~B)T .

In computing a row summation of (C�B)T , we repeatedly
sum a subset of rows in BT selected by the above conditions
for each PVM product. Then, if we have the results for
all combinations of row summations of BT , we can avoid
summing up the same set of rows over and over again. DBTF
precalculates these combinations, and caches the results in a
table in memory. This table maps a specific subset of selected
rows in BT to their Boolean summation result; we use ai:∧cj:
as a key to this table.

An issue related with this approach is that the space required
for the table increases exponentially with R. For example,
when the rank R is 20, we need a table that can store 220 ≈
1, 000, 000 row summations. Since this is infeasible for large
R, when R becomes larger than a threshold value V , we divide
the rows evenly into dR/V e smaller groups, construct smaller
tables for each group, and then perform additional Boolean
summation of rows that come from the smaller tables.

Lemma 2. Given R and V , the number of required cache
tables is dR/V e, and each table is of size 2dR/dR/V ee.

For instance, when the rank R is 18 and V is set to 10,
we create two tables of size 29, the first one storing possible
summations of b:1

T , ...,bT
:9, and the second one storing those

of b:10
T , ...,bT

:18. This provides a good trade-off between
space and time: while it requires additional computations for
row summations, it reduces the amount of memory used for
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Fig. 5: An overview of partitioning. There are a total of N partitions
p1, p2, ..., pN , among which the l-th partition pl is shown in detail. A
partition is divided into “blocks” (rectangles in dashed lines) by the
vertical boundaries between the underlying pointwise vector-matrix
products (blue rectangles). Numbers in pl refer to the kinds of blocks
a partition can be split into.

the tables, and also the time to construct them, which also
increases exponentially with R.

D. Careful Partitioning of the Workload

The third challenge is how to partition the workload ef-
fectively. A partition is a unit of workload distributed across
machines. Partitioning is important since it determines the
level of parallelism and the amount of shuffled data. Our goal
is to fully utilize the available computing resources, while
minimizing the amount of network traffic.

First, as described in Section III-B, DBTF partitions the
unfolded tensor vertically: a single partition covers a range of
consecutive columns. The main reason for choosing vertical
partitioning instead of horizontal one is because with vertical
partitioning, each partition can perform Boolean summations
of the rows assigned to it and compute their errors indepen-
dently, with no need of communications between partitions.
On the other hand, with horizontal partitioning, each partition
needs to communicate with others to be able to compute the
Boolean row summations. Furthermore, horizontal partitioning
splits the range of rank R, which is usually smaller than the
dimensionalities of an input tensor; small number of partitions
lowers the level of parallelism.

Since the workloads are vertically partitioned, each partition
computes an error only for the part of the row distributed to
it. Therefore, errors from all partitions should be considered
together to make the decision of whether to update an entry
to 0 or 1. DBTF collects from all partitions the errors for the
entries in the column being updated, and sets each one to the
value with the smallest error.

Second, DBTF partitions the unfolded tensor in a cache-
friendly manner. By “cache-friendly”, we mean structuring
the partitions in such a way that facilitates reuse of cached
row summation results as discussed in Section III-C. This
is crucial since cache utilization affects the performance of
DBTF significantly. The unit of caching in DBTF is BT

as shown in Figure 4. However, the width of each partition
is not always the same as or a multiple of that of BT , in
which case the width of a single partition is either greater



than that of multiple pointwise vector-matrix (PVM) products
(i.e., (cj: ~B)T ), or smaller than that of one PVM product.

Figure 5 presents an overview of our idea for cache-friendly
partitioning in DBTF. There are a total of N partitions p1, p2,
..., pN , among which the l-th partition pl is shown in detail. A
partition is divided into “blocks” (rectangles in dashed lines)
by the vertical boundaries between underlying PVM products
(blue rectangles). Numbers in pl refer to the kinds of blocks
a partition can be split into. Since the unit of caching is BT ,
with this organization, each block of a partition can efficiently
fetch its row summation results from the cache table.

Lemma 3. A partition can have at most three types of blocks.

Proof. There are four different types of blocks—(1), (2), (3),
and (4)—as shown in Figure 5. (a) If the width of a partition
is smaller than or equal to that of a single PVM product, it
can consist of up to two blocks. When the partition does not
cross the boundary of PVM products, it consists of a single
block, which corresponds to one of the four types (1), (2),
(3), and (4). On the other hand, when the partition crosses the
boundary between PVM products, it consists of two blocks of
types (2) and (4). (b) If the width of a partition is greater than
that of a single PVM product, multiple blocks comprise the
partition: possible combinations of blocks are (2)+(3)*+(4),
(3)++(4)?, and (2)?+(3)+ where the star (*) superscript denotes
that the preceding type is repeated zero or more times, the plus
(+) superscript denotes that the preceding type is repeated one
or more times, and the question mark (?) superscript denotes
that the preceding type is repeated zero or one time. Thus, a
partition can have at most three types of blocks.

An issue that should be considered is that the width of
blocks of types (1), (2), and (4) is smaller than that of a single
PVM product. If a partition has such blocks, we compute
additional cache tables for the smaller blocks from the full-size
one so that these blocks can also exploit caching. By Lemma 3,
at most two smaller tables need to be computed for each
partition, and each one can be built efficiently as constructing it
requires only a single pass over the full-size cache. Partitioning
is a one-off task in DBTF; DBTF constructs these partitions
in the beginning, and caches the entire partitions for efficiency.

E. Putting Things Together
We present DBTF in Algorithm 2. DBTF first partitions

the unfolded input tensors (lines 1-3 in Algorithm 2): each
unfolded tensor is vertically partitioned and then cached (Al-
gorithm 3). Next, DBTF initializes L set of factor matrices
randomly (line 6 in Algorithm 2). Instead of initializing a
single set of factor matrices, DBTF initializes multiple sets
as better initial factor matrices often lead to more accurate
factorization. DBTF updates all of them in the first iteration,
and runs the following iterations with the factor matrices that
obtained the smallest error (lines 7-8 in Algorithm 2). In each
iteration, factor matrices are updated one at a time, while the
other two are fixed (lines 15-17 in Algorithm 2).

The procedure for updating a factor matrix is shown in
Algorithm 4; its core operations—computing a Boolean row

Algorithm 2: DBTF Algorithm
Input: a three-way binary tensor X ∈ BI×J×K , rank R, a

maximum number of iterations T , a number of sets
of initial factor matrices L, and a number of
partitions N .

Output: Binary factor matrices A ∈ BI×R, B ∈ BJ×R, and
C ∈ BK×R.

1 pX(1) ← Partition(X(1), N)
2 pX(2) ← Partition(X(2), N)
3 pX(3) ← Partition(X(3), N)
4 for t← 1, . . . , T do
5 if t = 1 then
6 initialize L sets of factor matrices randomly
7 apply UpdateFactors to each set, and find the

set smin with the smallest error
8 (A,B,C)← smin

9 else
10 (A,B,C)← UpdateFactors(A,B,C)

11 if converged then
12 break out of for loop

13 return A, B, C

14 Function UpdateFactors(A,B,C)
/* update A to minimize

∣∣X(1) −A � (C�B)T
∣∣

*/
15 A← UpdateFactor(pX(1),A,C,B)

/* update B to minimize
∣∣X(2) −B � (C�A)T

∣∣
*/

16 B← UpdateFactor(pX(2),B,C,A)
/* update C to minimize

∣∣X(3) −C � (B�A)T
∣∣

*/
17 C← UpdateFactor(pX(3),C,B,A)
18 return A,B,C

Algorithm 3: Partition
Input: an unfolded binary tensor X ∈ BP×Q, and a number

of partitions N .
Output: A partitioned unfolded tensor pX ∈ BP×Q.

1 Distributed (D): split X into non-overlapping partitions
p1, p2, . . . , pN such that [p1 p2 . . . pN ] ∈ BP×Q , and
∀i ∈ {1, ..., N}, pi ∈ BP×H where

⌊
Q
N

⌋
≤ H ≤

⌈
Q
N

⌉
2 pX← [p1 p2 . . . pN ]
3 foreach p′ ∈ pX do
4 D: further split p′ into a set of blocks divided by the

boundaries of underlying pointwise vector-matrix
products as depicted in Figure 5 (see Section III-D)

5 D: cache pX across machines
6 return pX

summation and its error—are performed in a fully distributed
manner (marked by “D”, lines 7-9). DBTF caches all com-
binations of Boolean row summations (Algorithm 5) at the
beginning of UpdateFactor algorithm to avoid repeatedly
computing them. Then DBTF collects errors computed across
machines, and updates the current column DBTF is visiting
(lines 10-12 in Algorithm 4). Boolean factors are repeatedly
updated until convergence, that is, until the reconstruction
error does not decrease significantly, or a maximum number
of iterations has been reached.

Two types of data are sent to each machine: partitions of
unfolded tensors are distributed across machines once in the



Algorithm 4: UpdateFactor
Input: a partitioned unfolded tensor pX ∈ BP×QS , factor

matrices A ∈ BP×R (factor matrix to update),
Mf ∈ BQ×R (first matrix for Khatri-Rao product),
and Ms ∈ BS×R (second matrix for Khatri-Rao
product), and a threshold value V to limit the size of
a single cache table.

Output: an updated factor matrix A.
1 CacheRowSummations(pX, Ms, V )
/* iterate over columns and rows of A */

2 for column iter c← 1 . . . R do
3 for row iter r ← 1 . . . P do
4 for arc ← 0, 1 do
5 foreach partition p′ ∈ pX do
6 foreach block b ∈ p′ do
7 Distributed (D): compute the cache key

k← ar: ∧ [Mf ]i: where i is the row
index of Mf such that block b is
within the vertical boundaries of
underlying ([Mf ]i: ~Ms)

T

8 D: using k, fetch the cached Boolean
summation that corresponds to
ar: � ([Mf ]i: ~Ms)

T

9 D: compute the error between the
fetched row and the corresponding part
of pxr:

10 collect errors for the entries of column a:c from all
blocks (for both cases of when each entry is set to 0
and 1)

11 for row iter r ← 1 . . . P do /* update a:c */
12 update arc to the value that yields a smaller error

(i.e.,
∣∣xr: − ar: � (Mf �Ms)

T
∣∣)

13 return A

Algorithm 5: CacheRowSummations
Input: a partitioned unfolded tensor pX ∈ BP×QS , a matrix

for caching Mc ∈ BS×R, and a threshold value V to
limit the size of a single cache table.

1 foreach partition p′ ∈ pX do
2 Distributed (D): m← all combinations of row

summations of Mc (if S > V , divide the rows of Mc

evenly into smaller groups of rows, and cache row
summations from each one separately)

3 foreach block b ∈ p′ do
4 D: if block b is of the type (1), (2), or (4) as shown

in Figure 5, vertically slice m such that the sliced
one corresponds to block b

5 D: cache (the sliced) m for partition p′ if not cached

beginning, and factor matrices A,B, and C are broadcast to
each machine at each iteration; machines send intermediate
errors back to the driver node for each column update.

F. Implementation

In this section, we discuss practical issues pertaining to
the implementation of DBTF on Spark. Tensors are loaded
as RDDs (Resilient Distributed Datasets) [7], and unfolded
using RDD’s map function. We apply map and combineByKey
operations to unfolded tensors for partitioning: map transforms

an unfolded tensor into a pair RDD whose key is a partition
ID; combineByKey groups non-zeros by partition ID and
organizes them into blocks. Partitioned unfolded tensor RDDs
are then persisted in memory. We create a pair RDD containing
combinations of row summations, which is keyed by partition
ID and joined with the partitioned unfolded tensor RDD.
This joined RDD is processed in a distributed manner using
mapPartitions operation. In obtaining the key to the table for
row summations, we use bitwise AND operation for efficiency.
At the end of column-wise iteration, a driver node collects
errors computed from each partition to update the column.
G. Analysis

We analyze the proposed method in terms of time com-
plexity, memory requirement, and the amount of shuffled data.
We use the following symbols in the analysis: R (rank), M
(number of machines), T (number of maximum iterations), L
(number of sets of initial factor matrices), N (number of par-
titions), and V (maximum number of rows to be cached). For
the sake of simplicity, we assume an input tensor X ∈ BI×I×I .
Lemma 4. The time complexity of DBTF is O(|X| + (L +
T )
(
N
⌈
R
V

⌉
2dR/dR/V eeI + IR

[⌈
R
V

⌉
(min(V,R)max(I,N) +

I2) +N
])

.

Proof. Algorithm 2 is composed of three operations: (1) parti-
tioning (lines 1-3), (2) initialization (line 6), and (3) updating
factor matrices (lines 7 and 10). (1) After unfolding an input
tensor X into X, DBTF splits X into N partitions, and further
divides each partition into a set of blocks (Algorithm 3).
Unfolding takes O(|X|) time as each entry can be mapped
in constant time (Equation 1), and partitioning takes O(|X|)
time since determining which partition and block an entry
of X belongs to is also a constant-time operation. It takes
O(|X|) time in total. (2) Randomly initializing L sets of factor
matrices takes O(LIR) time. (3) The update of a factor matrix
(Algorithm 4) consists of four steps as follows.
i. Caching row summations (line 1). By Lemma 2, the

number of cache tables is dR/V e, and the maximum size
of a single cache table is 2dR/dR/V ee. Each row summation
can be obtained in O(I) time via incremental computations
that use prior row summation results. Hence, caching row
summations for N partitions takes O(N

⌈
R
V

⌉
2dR/dR/V eeI).

ii. Fetching a cached row summation (lines 7-8). The number
of constructing row summations and computing errors to
update a factor matrix is 2IR. An entire row summation is
constructed by fetching row summations from the cache ta-
bles O(max(I,N)) times across N partitions. If R≤V , a
row summation can be constructed by a single access to the
cache. If R>V , multiple accesses are required to fetch row
summations from

⌈
R
V

⌉
tables. Also, constructing a cache

key requires O(min(V,R)) time. Thus, fetching a cached
row summation takes O(

⌈
R
V

⌉
min(V,R)max(I,N)) time.

When R>V , there is an additional cost to sum up
⌈
R
V

⌉
row summations, which is O((

⌈
R
V

⌉
− 1)I2). In total, it

takes O(IR
[⌈

R
V

⌉
min(V,R)max(I,N)+(

⌈
R
V

⌉
−1)I2

]
).

iii. Computing the error for the fetched row summation
(line 9). It takes O(I2) time to calculate an error of one



row summation with regard to the corresponding row of the
unfolded tensor. For each column entry, DBTF constructs
row summations (ar:�(Mf�Ms)

T in Algorithm 4) twice
(for arc = 0 and 1). Therefore, given a rank R, this step
takes O(I3R) time. Note that the time complexities for
steps ii and iii are a loose upper bound since in practice
the computations for the I2 terms take time proportional
to the number of non-zeros in the involved matrices.

iv. Updating a factor matrix (lines 10-12). Updating an entry
in a factor matrix requires summing up errors for each
value that are collected from all partitions; this takes O(N)
time. Updating all entries takes O(NIR) time.

Thus, DBTF takes O(|X| + (L + T )
(
N
⌈
R
V

⌉
2dR/dR/V eeI +

IR
[⌈

R
V

⌉
(min(V,R)max(I,N) + I2) +N

])
time.

Lemma 5. The memory requirement of DBTF is O(|X| +
NI
⌈
R
V

⌉
2dR/dR/V ee +MRI).

Proof. For the decomposition of an input tensor X ∈ BI×I×I ,
DBTF stores the following four types of data in memory at
each iteration: (1) partitioned unfolded tensors pX(1), pX(2),
and pX(3), (2) row summation results, (3) factor matrices
A,B, and C, and (4) errors for the entries of a column
being updated. (1) While partitioning of an unfolded tensor
by DBTF structures it differently from the original one, the
total number of elements does not change after partitioning.
Thus, pX(1), pX(2), and pX(3) require O(|X|) memory. (2)
By Lemma 2, the total number of cached row summations
is O(

⌈
R
V

⌉
2dR/dR/V ee). By Lemma 3, each partition has at

most three types of blocks. Since an entry in the cache table
uses O(I) space, the total amount of memory used for row
summation results is O(NI

⌈
R
V

⌉
2dR/dR/V ee). Note that since

Boolean factor matrices are normally sparse, many cached
row summations are not normally dense. Therefore, the actual
amount of memory used is usually smaller than the stated
upper bound. (3) Since A,B, and C are broadcast to each
machine, they require O(MRI) memory in total. (4) Each
partition stores the errors for the entries of the column being
updated, which takes O(NI) memory.

Lemma 6. The amount of shuffled data for partitioning an
input tensor X is O(|X|).

Proof. DBTF unfolds an input tensor X into three different
modes, X(1), X(2), and X(3), and then partitions each one:
unfolded tensors are shuffled across machines so that each
machine has a specific range of consecutive columns of
unfolded tensors. In the process, the entire data can be shuffled,
depending on the initial distribution of the data. Thus, the
amount of data shuffled for partitioning X is O(|X|).

Lemma 7. The amount of shuffled data after the partitioning
of an input tensor X is O(TRI(M +N)).

Proof. Once the three unfolded input tensors X(1), X(2), and
X(3) are partitioned, they are cached across machines, and are
not shuffled. In each iteration, DBTF broadcasts three factor
matrices A, B, and C to each machine, which takes O(MRI)

TABLE III: Summary of real-world and synthetic tensors used for
experiments. B: billion, M: million, K: thousand.

Name I J K Non-zeros

Facebook 64K 64K 870 1.5M
DBLP 418K 3.5K 50 1.3M

CAIDA-DDoS-S 9K 9K 4K 22M
CAIDA-DDoS-L 9K 9K 393K 331M

NELL-S 15K 15K 29K 77M
NELL-L 112K 112K 213K 18M

Synthetic-scalability 26∼213 26∼213 26∼213 26K∼5.5B
Synthetic-error 100 100 100 7K∼240K

space in sum. With only these three matrices, each machine
generates the part of row summation it needs to process. Also,
in updating a factor matrix of size I-by-R, DBTF collects
from all partitions the errors for both cases of when each entry
of the factor matrix is set to 0 and 1. This process involves
transmitting 2IR errors from each partition to the driver node,
which takes O(NRI) space in total. Accordingly, the total
amount of data shuffled for T iterations after partitioning X

is O(TRI(M +N)).
IV. EXPERIMENTS

In this section, we experimentally evaluate our proposed
method DBTF. We aim to answer the following questions.

Q1 Data Scalability (Section IV-B). How well do DBTF
and other methods scale up with respect to the following
aspects of an input tensor: number of non-zeros, dimen-
sionality, density, and rank?

Q2 Machine Scalability (Section IV-C). How well does
DBTF scale up with respect to the number of machines?

Q3 Reconstruction Error (Section IV-D). How accurately
do DBTF and other methods factorize the given tensor?

We introduce the datasets and experimental environment in
Section IV-A. After that, we answer the above questions in
Sections IV-B to IV-D.

A. Experimental Settings

1) Datasets: We use both real-world and synthetic ten-
sors to evaluate the proposed method. The tensors used in
experiments are listed in Table III. For real-world tensors,
we use Facebook, DBLP, CAIDA-DDoS-S, CAIDA-DDoS-
L, NELL-S, and NELL-L. Facebook1 is temporal relationship
data between users. DBLP2 is a record of DBLP publications.
CAIDA-DDoS3 datasets are traces of network attack traffic.
NELL datasets are knowledge base tensors; S (small) and L
(large) suffixes indicate the relative size of the dataset.

We prepare two different sets of synthetic tensors, one
for scalability tests and another for reconstruction error tests.
For scalability tests, we generate random tensors, varying the
following aspects: (1) dimensionality and (2) density. We vary
one aspect while fixing others to see how scalable DBTF and
other methods are with respect to a particular aspect. For
reconstruction error tests, we generate three random factor

1http://socialnetworks.mpi-sws.org/data-wosn2009.html
2http://www.informatik.uni-trier.de/∼ley/db/
3http://www.caida.org/data/passive/ddos-20070804 dataset.xml

http://socialnetworks.mpi-sws.org/data-wosn2009.html
http://www.informatik.uni-trier.de/~ley/db/
http://www.caida.org/data/passive/ddos-20070804_dataset.xml


matrices, construct a noise-free tensor from them, and then
add noise to this tensor, while varying the following aspects:
(1) factor matrix density, (2) rank, (3) additive noise level, and
(4) destructive noise level. When we vary one aspect, others
are fixed. The amount of noise is determined by the number of
1’s in the noise-free tensor. For example, 10% additive noise
indicates that we add 10% more 1’s to the noise-free tensor,
and 5% destructive noise means that we delete 5% of the 1’s
from the noise-free tensor.

2) Environment: DBTF is implemented on Spark, and
compared with two previous algorithms for Boolean CP de-
composition: Walk’n’Merge [2] and BCP ALS [3]. We run
experiments on a cluster with 17 machines, each of which is
equipped with an Intel Xeon E3-1240v5 CPU (quad-core with
hyper-threading at 3.50GHz) and 32GB RAM. The cluster runs
Spark v2.0.0, and consists of a driver node and 16 worker
nodes. In the experiments for DBTF, we use 16 executors,
and each executor uses 8 cores. The amount of memory for
the driver and each executor process is set to 16GB and
25GB, respectively. The default values for DBTF parameters
L, V , and T (see Algorithms 2-5) are set to 1, 15, and
10, respectively. We run Walk’n’Merge and BCP ALS on
one machine in the cluster. For Walk’n’Merge, we use the
original implementation4 provided by the authors, and run
it with the same parameter settings as in [2] to get similar
results: the merging threshold t is set to 1 − (nd + 0.05)
where nd is the destructive noise level of an input tensor;
the minimum size of blocks is 4-by-4-by-4; the length of
random walks is 5; the other parameters are set to default
values. We implement BCP ALS using the open-source code
of ASSO5[8]. For ASSO, the threshold value for discretization
is set to 0.7; default values are used for other parameters.
B. Data Scalability

We evaluate the data scalability of DBTF and other methods
using both synthetic random and real-world tensors.

1) Synthetic Data: With synthetic tensors, we measure the
data scalability with regard to three different criteria. We allow
experiments to run for up to 6 hours, and mark those running
longer than that as O.O.T. (Out-Of-Time).

Dimensionality. We increase the dimensionality I=J=K
of each mode from 26 to 213, while setting the tensor den-
sity to 0.01 and the rank to 10. As shown in Figure 1(a),
DBTF successfully decomposes tensors of size I=J=K=213,
while Walk’n’Merge and BCP ALS run out of time when
I=J=K ≥ 29 and ≥ 210, respectively. Notice that the running
time of Walk’n’Merge and BCP ALS increases rapidly with
the dimensionality: DBTF decomposes the largest tensors
Walk’n’Merge and BCP ALS can process 382 times and 68
times faster than each method. Only for the smallest tensor
of 26 scale, DBTF is slower than other methods, which is
because the overhead of running a distributed algorithm on
Spark (e.g., code and data distribution, network I/O latency,
etc) dominates the running time.

4http://people.mpi-inf.mpg.de/∼pmiettin/src/walknmerge.zip
5http://people.mpi-inf.mpg.de/∼pmiettin/src/DBP-progs/

100

101

102

103

104

105

106

Facebook DBLP DDoS-S DDoS-L NELL-S NELL-L

21x

R
un

ni
ng

 t
im

e 
(s

ec
s)

Dataset

DBTF
Walk'n'Merge
BCP_ALS

Fig. 6: The scalability of DBTF and other methods on the real-
world datasets. Notice that only DBTF scales up to all datasets,
while Walk’n’Merge processes only Facebook, and BCP ALS fails
to process all datasets. DBTF runs 21× faster than Walk’n’Merge on
Facebook. An empty bar denotes that the corresponding method runs
out of time (> 12 hours) or memory while decomposing the dataset.

Density. We increase the tensor density from 0.01 to 0.3,
while fixing I=J=K to 28 and the rank to 10. As shown in
Figure 1(b), DBTF decomposes tensors of all densities, and
exhibits near constant performance regardless of the density.
BCP ALS also scales up to 0.3 density. On the other hand,
Walk’n’Merge runs out of time when the density increases
over 0.1. In terms of running time, DBTF runs 716 times faster
than Walk’n’Merge, and 13 times faster than BCP ALS. This
relatively small difference between the running times of DBTF
and BCP ALS is due to the small dimensionality of the tensor;
for tensors with larger dimensionalities, the performance gap
between the two grows wider as we see in Figure 1(a).

Rank. We increase the rank of a tensor from 10 to 60,
while fixing I=J=K to 28 and the tensor density to 0.01. As
shown in Figure 1(c), while all methods scale up to rank 60,
DBTF is the fastest among them: DBTF is 21 times faster
than BCP ALS, and 43 times faster than Walk’n’Merge when
the rank is 60. Note that V is set to 15 in all experiments. Since
Walk’n’Merge returns more than 60 dense blocks (rank-1 ten-
sors) from the input tensor, the running time of Walk’n’Merge
is the same across all ranks.

2) Real-World Data: We measure the running time of each
method on the real-world datasets. For real-world tensors, we
set the maximum running time to 12 hours. As Figure 6 shows,
DBTF is the only method that scales up for all datasets.
Walk’n’Merge decomposes only Facebook, and runs out of
time for all other datasets; BCP ALS fails to handle real-
world tensors as it causes out-of-memory (O.O.M.) errors for
all datasets, except for DBLP for which BCP ALS runs out
of time. Also, DBTF runs 21 times faster than Walk’n’Merge
on Facebook.

C. Machine Scalability

We measure the machine scalability by increasing the
number of machines from 4 to 16, and report T4/TM where
TM is the running time using M machines. We use the
synthetic tensor of size I=J=K=212 and of density 0.01,
and set the rank to 10. As Figure 7 shows, DBTF shows near
linear scalability, achieving 2.2× speed-up when the number
of machines is increased from 4 to 16.

http://people.mpi-inf.mpg.de/~pmiettin/src/walknmerge.zip
http://people.mpi-inf.mpg.de/~pmiettin/src/DBP-progs/
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Fig. 7: The scalability of DBTF with respect to the number of
machines. TM means the running time using M machines. Notice
that the running time scales up near linearly.

D. Reconstruction Error

We evaluate the accuracy of DBTF in terms of recon-
struction error, which is defined as |X − X′| where X is an
input tensor and X′ is a reconstructed tensor. In measuring
reconstruction errors, we vary one of the four different data
aspects—factor matrix density (0.1), rank (10), additive noise
level (0.1), and destructive noise level (0.1)—while fixing the
others to the default values. The values in the parentheses
are the default settings for each aspect. Tensors of size
I=J=K=100 are used in experiments. The DBTF parameter
L is set to 20. We run each configuration three times, and
report the average of the results to reduce the dependency
on randomness of DBTF and Walk’n’Merge. We compare
DBTF with Walk’n’Merge as they take different approaches
for Boolean CP decomposition, and exclude BCP ALS as
DBTF and BCP ALS are based on the same Boolean CP
decomposition framework (Algorithm 1). For Walk’n’Merge,
we compute the reconstruction error from the blocks obtained
before the merging phase [2], since the merging procedure
significantly increased the reconstruction error when applied
to our synthetic tensors. Figure 8(d) shows the difference
between the version of Walk’n’Merge with the merging proce-
dure (Walk’n’Merge*) and the one without it (Walk’n’Merge).

Factor Matrix Density. We increase the density of factor
matrices from 0.1 to 0.3. As shown in Figure 8(a), the recon-
struction error of DBTF is smaller than that of Walk’n’Merge
for all densities. In particular, as the density increases, DBTF
obtains more accurate results compared to Walk’n’Merge.

Rank. We increase the rank of a tensor from 10 to 60.
As shown in Figure 8(b), the reconstruction errors of both
methods increase in proportion to the rank. This is an expected
result since, given a fixed density, the increase in the rank of
factor matrices leads to increased number of 1’s in the input
tensor. Notice that the reconstruction error of DBTF is smaller
than that of Walk’n’Merge for all ranks.

Additive Noise Level. We increase additive noise level from
0.1 to 0.4. As Figure 8(c) shows, the reconstruction errors
of both methods increase in proportion to the additive noise
level. While the gap between the two methods narrows down
as the noise level increases, the reconstruction error of DBTF
is smaller than that of Walk’n’Merge for all additive noise
levels.

Destructive Noise Level. We increase destructive noise
level from 0.1 to 0.4. As Figure 8(d) shows, the reconstruction
errors of DBTF and Walk’n’Merge decrease in general as
the destructive noise level increases, except for the interval
from 0.1 to 0.2 where that of DBTF increases. Destructive
noise makes the factorization harder by sparsifying tensors
and introducing noises at the same time. Notice that DBTF
produces more accurate results than Walk’n’Merge, except at
the destructive noise level 0.4, which makes tensors highly
sparse. V. RELATED WORKS

In this section, we review related works on Boolean and nor-
mal tensor decompositions, and distributed computing frame-
works.
A. Boolean Tensor Decomposition

Leenen et al. [6] proposed the first Boolean CP decom-
position algorithm. Miettinen [3] presented Boolean CP and
Tucker decomposition methods along with a theoretical study
of Boolean tensor rank and decomposition. In [5], Belohlávek
et al. presented a greedy algorithm for Boolean CP decom-
position of three-way binary data. Erdös et al. [2] proposed a
scalable algorithm for Boolean CP and Tucker decompositions,
which performs random walk for finding dense blocks (rank-
1 tensors) and applies the MDL principle to select the best
rank automatically. In [9], Erdös et al. applied the Boolean
Tucker decomposition method proposed in [2] to discover
synonyms and find facts from the subject-predicate-object
triples. Finding closed itemsets in N -way binary tensor [10],
[11] is a restricted form of Boolean CP decomposition, in
which an error of representing 0’s as 1’s is not allowed.
Metzler et al. [4] presented an algorithm for Boolean tensor
clustering, which is another form of restricted Boolean CP
decomposition where one of the factor matrices has exactly
one non-zero per row.
B. Normal Tensor Decomposition

Many algorithms have been developed for normal tensor
decomposition. In this subsection, we focus on scalable ap-
proaches developed recently. GigaTensor [12] is the first work
for large-scale CP decomposition running on MapReduce.
HaTen2 [13], [14] improves upon GigaTensor and presents
a general, unified framework for Tucker and CP decompo-
sitions. In [15], Jeon et al. proposed SCouT for scalable
coupled matrix-tensor factorization. Recently, tensor decom-
position methods proposed in [12], [16], [13], [14], [15] have
been integrated into a multi-purpose tensor mining library,
BIGtensor [17]. Beutel et al. [18] proposed FlexiFaCT, a
scalable MapReduce algorithm to decompose matrix, tensor,
and coupled matrix-tensor using stochastic gradient descent.
CDTF [19], [20] provides a scalable tensor factorization
method focusing on non-zero elements of tensors.
C. Distributed Computing Frameworks

MapReduce [21] is a distributed programming model for
processing large datasets in a massively parallel manner. The
advantages of MapReduce include massive scalability, fault
tolerance, and automatic data distribution and replication.
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Fig. 8: The reconstruction error of DBTF and other methods with respect to factor matrix density, rank, additive noise level, and destructive
noise level. Walk’n’Merge* in (d) refers to the version of Walk’n’Merge which executes the merging phase. Notice that the reconstruction
errors of DBTF are smaller than those of Walk’n’Merge for all aspects except for the tensor with the largest destructive noise.

Hadoop [22] is an open source implementation of MapReduce.
Due to the advantages of MapReduce, many data mining tasks
[12], [23], [24], [25] have used Hadoop. However, due to
intensive disk I/O, Hadoop is inefficient at executing iterative
algorithms [26]. Spark [7] is a distributed data processing
framework that provides capabilities for in-memory compu-
tation and data storage. These capabilities enable Spark to
perform iterative computations efficiently, which are common
across many machine learning and data mining algorithms, and
support interactive data analytics. Spark also supports various
operations other than map and reduce, such as join, filter, and
groupBy. Thanks to these advantages, Spark has been used in
several domains recently [27], [28], [29], [30].

VI. CONCLUSION

In this paper, we propose DBTF, a distributed algorithm
for Boolean tensor factorization. By caching computation
results, exploiting the characteristics of Boolean operations,
and with careful partitioning, DBTF successfully tackles the
high computational costs and minimizes the intermediate data.
Experimental results show that DBTF decomposes up to
163–323× larger tensors than existing methods in 68–382×
less time, and exhibits near-linear scalability in terms of tensor
dimensionality, density, rank, and machines.

Future works include extending the method for other
Boolean tensor decomposition methods including Boolean
Tucker.
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