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ABSTRACT
Many real-world data are naturally represented as tensors,
or multi-dimensional arrays. Tensor decomposition is an
important tool to analyze tensors for various applications
such as latent concept discovery, trend analysis, clustering,
and anomaly detection. However, existing tools for tensor
analysis do not scale well for billion-scale tensors or offer
limited functionalities.

In this paper, we propose BIGtensor, a large-scale ten-
sor mining library that tackles both of the above problems.
Carefully designed for scalability, BIGtensor decomposes at
least 100× larger tensors than the current state of the art.
Furthermore, BIGtensor provides a variety of distributed
tensor operations and tensor generation methods. We demon-
strate how BIGtensor can help users discover hidden con-
cepts and analyze trends from large-scale tensors that are
hard to be processed by existing tensor tools.
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1. INTRODUCTION
Many real-world data with multiple attributes are nat-

urally represented as tensors, or multi-dimensional arrays.
Examples include movie rating data (movie, user, time, rat-
ing) and network intrusion logs (source IP, destination IP,
port number, time), to name a few.

Tensor decomposition is a crucial tool that allows us to
analyze such data for various applications including latent
concept discovery, trend analysis, clustering, and anomaly
detection [11]. PARAFAC and Tucker are two widely-used
tensor decomposition methods [9]. Each method comes with
two different versions: the unconstrained and the nonnegativity-
constrained. The nonnegative tensor decomposition enforces
all elements in the factors to be nonnegative. Sometimes we
have supplementary information coupled with certain modes
of the tensor data. For example, for the (movie, user, time,
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Figure 1: Overview of the system which consists of two
parts: BIGtensor is a suite of large-scale algorithms run-
ning on the Hadoop platform to handle tensor and tensor
decomposition; the tensor mining and analysis module
allows the user to discover concepts and analyze trends
from the factor matrices, which are the results of tensor
decomposition.

rating) tensor, we may have a (movie, genre) matrix. Cou-
pled Matrix-Tensor Factorization (CMTF) [1] is the stan-
dard tool to jointly analyze coupled matrix-tensor data.

Although there exist several tools for analyzing tensors [3,
2, 4, 13, 1], they suffer from either or both of the following
limitations:

1. Limited scalability. They run on a single machine,
and thus cannot handle large tensors that exceed the
capacity of a single machine. While distributed tools
also exist (e.g. [4]), their scalability is still limited for
truly large tensors [5].

2. Limited functionality. They do not provide a unified
framework to handle tensors and tensor decomposi-
tions. They support only a couple of tensor algorithms,
requiring the user to assemble several different tools to
process tensors. Table 1 shows a comparison between
BIGtensor and two other state-of-the-art tensor tools.

In this paper, we present BIGtensor, a large-scale tensor
mining library running on the Hadoop platform. As a uni-
fied framework to handle tensor and tensor decompositions,
BIGtensor provides four different sets of functionalities:

• Tensor Decomposition. PARAFAC, Nonnegative
PARAFAC, Tucker, Nonnegative Tucker, CMTF.

• Tensor Generation. FromFactors (from factor ma-
trices and core tensor), Random (tensor values are set
randomly), etc.

• Tensor-Tensor Operation. BinaryOps (and, or, xor),
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ArithmeticOps (+, −, ×, ÷), NModeProduct (n-mode
product of two tensors), etc.

• Tensor Manipulation. Matricization (unfolding a
tensor into a certain mode), Convert2Binary (convert-
ing a tensor into a binary tensor), etc.

Carefully designed for scalability, BIGtensor decomposes at
least 100× larger tensors than the current state of the art.

For our demonstration, we apply BIGtensor to large real-
world tensors that lie beyond the ability of existing tools. We
will show how we can employ BIGtensor for tensor decompo-
sition and analysis, and invite the audience to uncover latent
concepts and trends from real-world tensor data on their
own by interactively exploring the factor matrices decom-
posed from the Microsoft academic graph, NELL, DARPA,
MovieLens, YELP, and PhoneCall tensor data (see Table 3
for details on these tensors). The web site for this paper is
located at http://datalab.snu.ac.kr/bigtensordemo.

Table 1: Comparison of functionalities provided by
BIGtensor and other state-of-the-art tensor tools. P:
PARAFAC, T: Tucker, PN: PARAFAC-Nonnegative,
TN: Tucker-Nonnegative, C: CMTF.

Functionality BIGtensor
Tensor

Toolbox
Flexi-
FaCT

Tensor Decomposition
P, PN, T,

TN, C
P, PN, T P, PN, C

Tensor Generation Yes Yes No
Tensor-Tensor Operation Yes Yes No
Tensor Manipulation Yes Yes No
Distributed Yes No Yes

2. SYSTEM OVERVIEW
Our system consists of two parts: 1) BIGtensor and 2) the

tensor mining and analysis module. As illustrated in Fig-
ure 1, our system relies on BIGtensor for the decomposition
of large-scale tensors, and uses the tensor mining and analy-
sis module to discover concepts and analyze trends from the
resulting factor matrices. In the following subsections, we
give an overview of our system.

2.1 Distributed Tensor Decomposition
BIGtensor supports both tensor decomposition and cou-

pled matrix-tensor decomposition (CMTF) methods. A com-
mon challenge shared by both types of decompositions is to
scale up to large tensors with millions or billions of elements
in each dimension, that are becoming more common in real-
world settings. The most important issue is the ‘intermedi-
ate data explosion’ problem [8] where the amount of space
required for the materialization of intermediate matrices is
too large for a single machine, or even for a cluster.

BIGtensor is carefully designed for massive scalability.
The main ideas [8, 7, 6, 5] employed by BIGtensor are as
follows: 1) BIGtensor solves the intermediate data explosion
problem by (a) exploiting the sparsity of real-world tensors,
(b) decoupling the steps involved in n-mode vector prod-
uct, (c) reusing intermediate data, and (d) using optimiza-
tions for MapReduce such as parallel outer products and
distributed cache multiplication. 2) BIGtensor minimizes
floating point operations through careful ordering of compu-
tations to update tensor factors. 3) BIGtensor significantly
reduces the number of jobs and disk accesses by integrating
redundant MapReduce jobs. Due to the lack of space, we
refer the reader to [8, 7, 6, 5] for more details on these ideas.

Scalability. We demonstrate the scalability of tensor de-
composition using BIGtensor by comparing BIGtensor against

Table 2: Scalability of BIGtensor and other tools. We
report the mode length and the density of the largest
data each tool processes using two representative tensor
decomposition algorithms, PARAFAC and Tucker. BIG-
tensor decomposes 100× larger data in terms of mode
length than both of the tools, and also decomposes 100×
denser data than the Tensor Toolbox.

Scalability Method
BIG

tensor
Tensor

Toolbox
Flexi-
FaCT

Mode Length
& Nonzeros

PARAFAC ≥ 109 ≤ 107 ≤ 107

Tucker ≥ 109 ≤ 107 −

Density
PARAFAC ≥ 10−5 ≤ 10−7 ≥ 10−5

Tucker ≥ 10−5 ≤ 10−7 −

the two state-of-the-art tools, the Tensor Toolbox [3] and
FlexiFaCT [4], in terms of tensor size. We run BIGtensor
and FlexiFaCT on a Hadoop cluster with 40 machines, each
of which has a quad-core Intel Xeon E3-1230v3 CPU and
32GB RAM. The Tensor Toolbox runs on a single machine
in the cluster. In all experiments, the rank size for PARA-
FAC is set to 10, and the core tensor size for Tucker is set
to 10×10×10.

We measure the scalability of each tool on synthetic ran-
dom tensors in the following two aspects. (a) Mode Length
and Number of Nonzeros. We increase the length I = J = K
of each mode from 103 to 109, and set the number of nonze-
ros to I×10. In Table 2, we report the size of the largest data
each tool processes using two representative decomposition
algorithms, PARAFAC and Tucker. While BIGtensor pro-
cesses 109 scale tensor, both the Tensor Toolbox and Flexi-
FaCT run out of memory when the mode length goes beyond
107. (b) Density. We increase the tensor density from 10−9

to 10−5, while fixing the mode length I = J = K to 105.
Table 2 shows that BIGtensor processes 100× denser data
than the Tensor Toolbox. For both of the above aspects,
nonnegative PARAFAC and Tucker, and CMTF also show
a similar performance.

2.2 Tensor Mining and Analysis
Tensor decomposition enables us to analyze the original

tensor data from multiple perspectives. By analyzing factor
matrices, which are the output of tensor decomposition, we
discover latent concepts, anomalies, and trends.

However, for large-scale tensors, two challenges exist with
this process. First, it is infeasible to investigate all elements
of factor matrices since the number of elements in each factor
matrix is the same as that of the huge input tensor. For
example, for NELL data, the minimum number of elements
to explore in each factor matrix is 26 million. To handle this
issue, we consider only the top-k highest valued elements in
each factor matrix. Second, even after this top-k filtering,
there are often elements that appear in most columns of the
factor matrix. Although their values are high, they do not
add much information. Therefore, we calculate new scores
for the top-k elements to reflect the specificity of elements
that appear in only a few columns. New scoring function
based on IDF score is (1 + α log(R/col)) × val, where α is
a predefined constant, R is the number of columns in the
factor matrix, col is the number of columns the element
appears in, and val is the value of the element. We set α to
2.0. Then, we sort the elements in the descending order of
these new scores.

Concept Discovery. Columns of the factor matrices
can be roughly regarded as the soft-clustering of the tensor
data. Examining each preprocessed factor matrix and seeing

http://datalab.snu.ac.kr/bigtensordemo


what kind of elements form each column reveals the nature
of concepts hidden in the data. For instance, we discover
‘Comedy’ and ‘Horror’ concepts from MovieLens data as in
Figure 4. Furthermore, elements whose values are distinct
from those of other elements in the same concept represent
anomalies. Figure 5 shows that we find an attacker whose
value is the highest in the first concept. To facilitate the
finding of concepts, we can also use additional information
for each attribute, such as the user demographics. Visual-
izing additional information for the selected concept shows
its various features at a single glance.

Trend Analysis. For tensors with a timestamp attribute,
we can discover temporal trends from the time factor matrix.
Since vectors for the n-th concept from different factor ma-
trices are related, a temporal pattern indicates a temporal
characteristic of the associated factors. For example, we find
from MovieLens data that the ‘Horror’ concept experiences
seasonal spikes as shown in Figure 4. For trend analysis,
we visualize the temporal values of each concept over time,
and look for interesting patterns and temporal correlations
between concepts.

3. DEMONSTRATION PLAN
Demonstration Detail. In our demonstration, the au-

dience will be invited to apply PARAFAC and Tucker to sev-
eral real-world datasets, and analyze them using our system.
We will prepare three ways for the users to learn about our
system. First, we will prepare a poster to give an overview
of the system. Second, we will give a guided tour in which
we show the process of how we arrived at our discoveries
from the data. Third, we will let our audience to mine the
data and make their own discoveries with our system.

Users will be given the options to select (1) the tensor
data, (2) the tensor decomposition method among PARA-
FAC and Tucker, (3) the rank size for PARAFAC or the core
tensor size for Tucker, and (4) the analysis mode between
concept discovery and trend analysis.

For concept discovery, we provide an overview mode and a
detail mode. In the overview mode, users will be able to see
all vectors in a specific factor they choose, such as the movie
factor, and their top-k elements in a tabular form. More de-
tails on each element will appear when the user moves the
mouse over it. In the detail mode (Figure 2), they will have
a more comprehensive look at each vector of a particular
factor matrix. Users will be presented highly ranked ele-
ments of the chosen vector. Additional information for each
element, such as the movie genres and its statistics, will also
be displayed when available to help with the discovery pro-
cess of the audience. Since vectors for the n-th concept from
different factor matrices are closely related with each other,
we also show the other vectors of the n-th concept from other
factor matrices on the side for a better understanding of the
characteristics of the n-th concept in general.

In the trend analysis mode (Figure 3), we visualize the
values of temporal elements (e.g. ‘year-month’ elements)
over time so that the user can find meaningful patterns.
The tool supports overlapping multiple graphs; users can
choose to visualize several concepts at the same time, and
look for temporal relationships among them. The graph is
zoomable; users can zoom into a shorter time frame, for
example, to observe the pattern of a concept over the course
of a day, or they can zoom out to month or year level to have
a broader view. Moreover, our tool displays those vectors
from other factor matrices, which correspond to the concepts

selected by the user. This makes it convenient to associate
the temporal characteristic with the linked dimension at a
glance.

Datasets. For the demonstration, we will use the follow-
ing real-world tensors: Microsoft academic graph, NELL,
DARPA, MovieLens, YELP, and PhoneCall (see Table 3).

4. RELATED WORK
Several scalable algorithms for tensor analysis have been

developed. GigaTensor [8] is the first work on large-scale
PARAFAC decomposition running on MapReduce. HaTen2
[7, 6] improves upon GigaTensor, and combines Tucker and
PARAFAC decompositions into a general framework. Jeon
et al. [5] propose SCouT for scalable coupled matrix-tensor
factorization. BIGtensor unifies tensor decomposition meth-
ods proposed by [8, 7, 5] in a single library, and further
improves PARAFAC and Tucker decomposition algorithms
from [8, 7] by adopting the ideas from [5] with code optimiza-
tion. As a tensor mining library, BIGtensor also provides
various tensor operations and tensor generation methods.
Shin et al. [12] propose PARAFAC-based distributed ten-
sor decomposition methods for partially observable tensors.
In [4], Beutel et al. propose FlexiFaCT, a scalable Map-
Reduce algorithm for decomposing matrix, tensor, and cou-
pled matrix-tensor through distributed stochastic gradient
descent. ParCube [10] is a parallelizable PARAFAC decom-
position method that leverages random sampling techniques.
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APPENDIX
A. SCREENSHOTS

Figure 2: Detail mode for concept discovery using
PARAFAC on MovieLens dataset. The detail mode
shows highly ranked elements of the selected concept
with additional information such as the movie genres.
It also shows a bar chart for the genre occurrences in
the chosen concept to help with the discovery process of
the audience. Further, the tool displays other vectors of
the current concept from other factor matrices on the
side.

Figure 3: Trend analysis mode using PARAFAC on
MovieLens dataset, in which the values of temporal ele-
ments of the selected concepts are visualized. (1) The
tool supports overlapping multiple graphs. (2) The
graph is zoomable; users can zoom into a shorter time
frame, or zoom out to month or year level. (3) The tool
displays those vectors from other factor matrices, which
correspond to the concepts the user selects near the top
of the tool.

B. OMITTED MATERIAL

Table 3: Summary of the tensor data used for the
experiments and the demonstration. More details on
each dataset can be found at http://datalab.snu.ac.kr/
bigtensordemo. B: billion, M: million, K: thousand.

Name Mode Nonzeros

Microsoft
Academic

Graph

Paper Author Affiliation
325 M

123 M 123 M 2.7 M

NELL

Noun
phrase 1

Noun
phrase 2

Context
144 M

26 M 26 M 48 M

DARPA
Source IP Dest IP Time

28 M
22 K 22 K 24 M

MovieLens
User Movie YearMonth

10 M
72 K 11 K 157

YELP
User Business YearMonth

334 K
71 K 16 K 108

PhoneCall
Source Dest Date

1 B
30 M 30 M 62

Random
I J K

10 K∼10 B
1 K∼1 B 1 K∼1 B 1 K∼1 B

Figure 4: Overview of concept discovery and trend anal-
ysis on MovieLens dataset. We find from the movie fac-
tor matrix that movies in the same genre are clustered
into the same concept, for example, comedy and horror.
In the yearmonth factor matrix, we see that the demand
for horror movies suddenly increases at a certain period,
while the demand for comedy movies is almost constant.

Figure 5: Overview of anomaly detection on DARPA
dataset. Concept 1 shows an example of network attacks.
The highest values of each vector in concept 1 indicate
an attacker, a victim, and the attack time, respectively.
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