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Abstract—Genetic programming is very computationally in-
tensive, particularly in CPU time. A number of approaches
to evaluation cost reduction have been proposed, among them
early termination of evaluation (applicable in problem domains
where estimates of the final fitness value are available during
evaluation). Like all cost reduction techniques, early termination
balances overall computation cost against the risk of finding worse
solutions. We evaluate the influence of various properties of the
problem domain – problem class, reliability of fitness estimates,
trajectory of fitness estimates, and evolutionary trajectory – to
determine whether any is able to predict the effects of early
termination. There is little correlation with any of these, with
one exception. Boolean problems see little change in running time,
and hence only small changes in performance, are distinguished
by both problem class, and each of the other metrics.

I. INTRODUCTION

Right from the start, Genetic Programming (GP) has
been used to generate solutions to many real-world problems
in diverse fields [1]–[3]. Yet there remain many real-world
problems which lie outside GP’s reach purely because of
the computational cost of search, both in CPU time and
in memory [3]. While many problems can be solved with
relatively modest computational effort, many other potential
applications make very high processor demands, with most of
the time spent in performing fitness evaluations [4].

In our direct experience, the initial C++ implementation
of the fitness function for the water quality model which
motivated this work, by a highly experienced and expert pro-
grammer, required 5 cpu minutes per evaluation. The project
would have been abandoned had this not been reduced. The
problem was only finally overcome through a combination
of the techniques described here, and a highly complex (and
fragile) C++ run-time compilation-and-loading architecture, re-
quiring months of development that would be unacceptable in
most industrial environments. Another project was terminated
after a pilot study, once it became clear that the evaluation cost
for the full problem was likely to be of the order of hours. But
even much lower evaluation costs can block an application. In
on-line applications, even millisecond evaluation times, that
would generally be acceptable off-line, may be intolerable.

The problem becomes more serious with growth in problem

size and complexity – both in direct computational cost, and
in the cost of manual code optimisation. There are a number
of ways to alleviate this problem, which we introduce in
section II. One relevant to a wide range of problems – those
in which evaluation either is or can be made incremental –
is early termination. In this approach, the system learns to
estimate the final fitness from early stages of the evaluation,
and also how to determine when the estimate is sufficiently
accurate. It has the important advantage of being – at least
conceptually – orthogonal to the other approaches which
have been proposed, suggesting the possibility of combining
these approaches, and generating greater savings. This paper
represents the first stage of this investigation, examining the
effects of early termination on the evaluation cost of GP runs,
and the corresponding changes in the solution-finding capacity
of GP. It also investigates problem characteristics that might
explain and/or predict the effect of early termination on specific
problem classes. Finally, it discusses how the method might
be combined with other cost-reduction techniques.

The remainder of the paper is organised thus: In section
II, we overview methods for accelerating GP running time.
We summarise research on noisy fitness evaluation that forms
a backdrop to early termination methods, and summarise
Grammar Guided Genetic Programming (GGGP), used for one
of the problems. In section III, we detail early termination,
and its relationship with time-series and machine learning
problems. Section IV describes the benchmark problems and
the experiment settings. In section V, results are provided and
their implications are discussed. We conclude in section VI
with a summary and pointers for future work.

II. BACKGROUND

Evaluation cost reduction techniques divide naturally into
two classes: some fully evaluate fitness of all individuals, while
others make a cheaper approximation to the fitness, and use
that cheaper approximation for some evaluations. The latter
depend heavily on the robustness of evolutionary algorithms
to noise in fitness evaluation, a topic that has been heavily
researched in recent years.



A. Uncertain Evaluation in Evolutionary Algorithms

The literature on noise in evolutionary algorithms has
two main branches – theoretical analysis as exemplified by
the work of Beyer and Arnold [5], [6], and the practical
experimentation detailed in Jin and Branke’s survey [7]. To
summarise, evolutionary algorithms handle noise better than
other algorithms applying the same resources to the same
domain. However the effect of noisy evaluation varies. For
simpler domains, noise leads to slower convergence to good
solutions, and the solutions may not be quite as good [6]. On
the other hand, improved performance has been reported on
more complex domains [8], perhaps because noise can permit
escape from local optima.

B. Reducing the Cost of Fitness Evaluation

A wide range of methods have been used to speed up
fitness evaluation. Among those which do so directly, we may
include direct machine code evaluation, parallel execution,
simplification, caching and more pragmatic solutions such as
run-time compilation. In more detail:

1) Machine code evolution [3], [9]: represents solutions as
fragments of machine code (embedded in other machine code
structures that maintain the semantics). These fragments are
the direct targets of evolution, and thus avoid the overheads of
compilation – Nordin reported speed-ups of up to two orders
of magnitude relative to an interpreted C-language system.
More recently, even higher speed-ups have been reported from
direct implementations on GPUs [10], and also from GPU-
implemented interpreters for GP [11]. This speed comes at a
cost in terms of programming flexibility and interpretability.

2) Parallel implementations [4]: have been attempted at
a number of granularity levels. The most successful, partly
because of simplicity, use coarse-grained parallelism as in the
island model, where whole populations are evolved in parallel,
with slow exchange of individuals between populations. Pre-
cisely speaking, these algorithms reduce not the computational
resources, but the elapsed time, since the same (or even greater)
resources may be used, but in parallel rather than in sequence.
They may gain further advantage from the demic isolation, but
this is a benefit from the grid structure, which is often used in
sequential systems as well, rather than of parallelism per se.

3) Algebraic simplification [12]: directly reduces the cost
of evaluation by simplifying GP trees before they are evalu-
ated. Early approaches retained the simplified individuals in the
population (a Lamarckian perspective), leading to inconsistent
results from premature convergence. More recent systems
generally retain the complex individual in the population, using
simplification purely for evaluation.

4) Caching [13]: trades off memory resources against
computation time, storing the results of subtree evaluation in
case they may be evaluated again. Hashing is used to detect
this, the stored result being used in future evaluations. The
effectiveness depends on the hit rate of repeated evaluations,
which varies from domain to domain, since reductions in
evaluation cost must be traded off against the cost of hash-
ing and storage. Caching may be effectively combined with
simplification, which improves the hit rate.

5) Pragmatic approaches: apply a combination of soft-
ware engineering methods (code profiling, structured design)
and compiler mechanisms (run-time compilation, just-in-time
compilation methods) to speed up code in more generally
applicable ways.

These methods all conduct exact fitness evaluation, em-
ploying a variety of strategies to speed it up. The remainder
rely on the robustness of evolutionary algorithms to noise,
providing fitness estimates which, while not exact, are good
enough to guide the GP system to an equivalent destination.

6) Fitness approximation [14]: evaluates a surrogate for
the fitness. The surrogate is usually built by machine learning,
and approximates the value that would have been obtained. The
use of learning requires some instances to be fully evaluated.
As evolution progresses, the new instances will differ from
the training population, so that re-learning must be conducted–
determining how often is a key issue.

7) Clustering [15]: uses a heuristic estimate of similarity
to cluster individuals. Only one individual is evaluated per
cluster, the others being assigned the same fitness. It can be
viewed as a subtype of fitness approximation, in which the set
of exemplars from the clusters form an instance-based model.

8) Training subset evaluation [16]: estimates the fitness
of an individual using only a subset of training data. How to
select a subset, and how to use the partial evaluation resulting
from it determine the effectiveness of this method. A previous
study [17] applied limited error fitness to a classification
problem, where the fitness is computed according to the
number of cases an individual misclassifies after it exceeds
an error limit, at which point the fitness evaluation stops.

Early termination, which is the primary theme of this paper,
falls into this category, though it differs from aforementioned
training subset evaluation methods in handling cases where the
evaluation order of training instances is fixed. We will describe
it in detail in section III.

C. Grammar Guided Genetic Programming

Most domains in these experiments were encoded in Koza-
style expression-tree GP (denoted as GP). One domain required
more sophisticated mechanisms to restrict the individuals
generated. We used Grammar Guided GP (GGGP), in which
grammars delineate the search space in the form of the
Context-Free Grammar (CFG)-based GGGP of [18].

III. EARLY TERMINATION

Genetic Programming (GP) is computationally intensive:
large populations and many generations lead to many fitness
evaluations; bloat leads to large individuals so that each
evaluation is expensive [3]; for many problems, multiple tree
evaluations are required for each individual. In the latter cases,
fitness evaluation is incremental, and early stages may give a
more or less reliable estimate of the ultimate fitness, depending
on the specific problem. One way to reduce the cost of fitness
evaluation is to terminate early, and use the estimate as a
surrogate, when it is sufficiently reliable.

For such problems that require incremental fitness eval-
uation, we use a sequence of intermediate fitness values



for the current individual, along with previous fitness values
from fully-evaluated individuals, to decide whether to stop
evaluating. If we stop, we use this information to estimate the
final fitness value of the individual. We aim to stop as early as
possible, without adversely affecting the algorithm behaviour.

There is a trade-off between evaluation time and reliability:
full evaluation is reliable, but at high cost; entirely omitting
evaluation eliminates that cost, but gives random results.
The ‘sweet spot’ lies between. There is one other important
consideration: the anticipated fitness of the individual should
feed into the determination of effort. The best-of-run individual
needs to be evaluated exactly, since we eventually need to
know its exact fitness. Conversely we do not care whether an
individual is the least fit in a population or the second-least-
fit – it is highly unlikely to be selected, and its progeny are
unlikely to survive. So predictions of high fitness justify more
evaluation effort than predictions of low fitness.

Intermediate fitness values from multiple evaluations gener-
ate a kind of time-series problem, as the update to a previous
intermediate fitness value with the current evaluation result
determines the next intermediate fitness value. However the
problem differs from classical time series prediction in that we
care only about estimates of the final value, not about inter-
mediate values. Conversely, in some ways it looks like an on-
line learning problem, but violates the common assumptions
of machine learning in at least the following ways:

1) Goal: what we wish to optimise is not the accuracy
of estimation of the individual’s final fitness per se,
but its effect on the GP system’s eventual solution

2) Cost: what we minimise is the evaluation effort on
each instance, not the number of instances

3) Training distribution: we cannot afford to fully eval-
uate an unbiased set of training instances. We must
learn from a biased sample: individuals which are
likely to be fit (and thus justify full evaluation).

4) Independence: we could potentially treat estimation at
each evaluation stage as a separate learning problem;
but this ignores time relationships, discarding infor-
mation in an already information-poor domain. If we
treat the estimates from different stages together, we
lose the assumption of independence.

So while this problem resembles both time-series estimation
and machine learning, it is rather different from either; we
have been unable to find any preceding theory.

We focus on the case where the evaluation order of fitness
cases is fixed, although the proposed method can handle the
non-fixed case as well. In the former case, other instance-
based evaluation cost reduction techniques such as [16], [17]
are inapplicable, since they rely on re-ordering or random
sampling of fitness cases.

Our aim in this paper is to

1) Better understand how the problem domain affects the
amount of speed-up gained from early termination

2) Better understand how early termination affects al-
gorithm performance (quality of solutions), and its
variation with problem domain

Algorithm 1 Fitness Computation with Early Termination

Initialize bestSoFar to a large value.
procedure COMPUTEFITNESS(individual)

fitness ⇐ 0
i ⇐ 0
while i < NumFitcases do

Update fitness of individual with fitness case i
if fitness > bestSoFar then ◃ Early Termination

return Extrapolate(fitness, i, NumFitcases)
end if
i ⇐ i+ 1

end while
if fitness < bestSoFar then

bestSoFar ⇐ fitness
end if
return fitness ◃ Full Evaluation

end procedure

procedure EXTRAPOLATE(fitness, i, NumFitcases)
slope = fitness/(i+ 1)
return NumFitcases× slope ◃ Linear Extrapolation

end procedure

For one class of problems, deciding when to stop, and how
to extrapolate fitness, are easier. Many incremental evaluation
problems minimise an error function over a set of points.
Many use the l1 norm (mean absolute error, MAE), with an
important property: the absolute error monotonically increases
as we evaluate cases. If we terminate after it exceeds the best
individual so far, and extrapolate linearly over remaining cases,
the actual MAE must exceed that of the best-so-far: we will
fully evaluate the best individual. Others use higher norms,
notably the l2 norm (root mean square error, RMSE). We are
not guaranteed to fully evaluate the fittest individuals, but its
approximate monotonicity means we are unlikely to get very
wrong estimates. In either case, the earlier we terminate, the
more likely it is that the actual fitness is bad (in which case,
any errors do not matter much). In this paper, we concentrated
on such problems. The detail is shown in algorithm 1.

IV. EXPERIMENTS

A. Experimental Design

We studied the effects of early termination on a number
of problems: some symbolic regressions, two toy differential
equations, and a further one abstracted from a real-world
application. For each, we ran a statistically meaningful number
of two types of runs: with and without early termination.

B. Test Problems

The test problems are shown in table I, and detailed below:

1) Symbolic Regression Problems: Each consists of a target
real-valued function, sampled at random points over a range;
target, range, and number of samples are shown in table I.

2) Parity Problems: The target Boolean even parity func-
tion is sampled over all possible Boolean inputs; the problem
size and number of samples are shown in table I.



TABLE I. PROBLEM DETAILS

Problem Problem Target Range Fitness
Class Name Function Cases

Alg Qrt x4 + x3 + x2 + x x ∈ [−1, 1] 200

Alg Root
√
x x ∈ [0, 4] 200

Alg 2vFrac 1

1+x−4 + 1

1+y−4 x, y ∈ [−5, 5] 400

Alg 2vQrt x4 − x3 + y2

2
− y x, y ∈ [−3, 3] 400

Trig Trg1 cos 3x x ∈ [0, 2] 200

Trig Trg2 sin x2 cos x x ∈ [−2, 2] 200
Trig 2vTrg1 xy + sin (x − 1)(y − 1) x, y ∈ [−3, 3] 400
Trig 2vTrg2 6 sinx cos y x, y ∈ [−5, 5] 400
Parity E5P parity function of 5 inputs bi ∈ {0, 1} 32
Parity E6P parity function of 6 inputs bi ∈ {0, 1} 64
Parity E7P parity function of 7 inputs bi ∈ {0, 1} 128

DE DE1 e− sin x + 2 x ∈ [−2, 2] 400

DE DE2 x4 + x3 + x2 + x x ∈ [−2, 2] 400
Real Lake See detail below 2424

3) Differential Equation Problem: In Koza’s form [1],
differential equations are symbolic regression problems in
which the target function is specified indirectly by a differential
equation and sufficient boundary conditions.

The equations we used were:

dy

dx
+ y cosx− 2 cosx = 0

where y0 = 3 for x0 = 0
(1)

dy

dx
− 4x3 − 3x2 − 2x− 1 = 0

where y0 = 0.6496 for x0 = 0.4
(2)

with closed form solutions e− sin x + 2 and x4 + x3 + x2 + x.

a) Fitness Calculation: The absolute values of the dif-
ferential equation (substituted by the individual) are summed
to obtain the first component of fitness (fit to the differen-
tial equation). The derivative, dy

dx is obtained by numerical
approximation: for endpoints, the slope to the nearest point;
for others, the average of the slope to left and to right. The
second component (satisfaction of the initial condition) is the
absolute difference between y0 and the value of an individual
at x0, multiplied by the number of fitness cases. The overall
fitness is 75% of the first component plus 25% of the second.

C. Lake Problem

TABLE II. GRAMMAR FOR LAKE PROBLEM

T → BA BZ
BA → EXP BZ → EXP

EXP → EXP OP EXP EXP → PRE EXP | VAR
PRE → eˆ OP → + | − | × | /
VAR → Vba | Vbz | Valk VAR → Vsi | Vtb | Vcd

VAR → Vdo | Vlgt | Vn VAR → Vp | Vph | Vsd

VAR → Vtmp | R

This problem is abstracted from a real world problem
(too expensive to use in a parametric study; moreover we
don’t know the optimum solution), modelling algal growth in
Korea’s Lower Nakdong River. It incorporates a complex river
flow model (derived from knowledge) and an evolved algal
growth model [19]. The river is regulated by a sea barrage,
and often flows quite slowly, with algal blooms concentrated at
these times – so it may be modelled, with some cost to fidelity,
as a lake. Indeed, this has been in some previous models of
its algal growth [20]. To produce a realistic but less expensive

version of this problem, we took the best model output from
the river modelling system. We simplified the model manually,
omitting river flows and other complexities, while retaining the
overall behaviour:

∂BA

∂t
= Vph + [(−0.126× Vba)− (Vbz ×Grazing)]

∂BZ

∂t
= Vbz × [(3.35×Grazing)− 0.01] (3)

Grazing = 0.0123×
Vba

Vba + 42.949

×e−0.0057 ∗ (Vtmp − 20)2

BA and BZ mean measurements of phytoplankton and zoo-
plankton respectively, while other variables in the equation
represent various parameters used in the model.

We used this model to generate new artificial data, which
we took as the target of a differential equation modelling
process similar to the preceding. Environmental attributes
such as water temperature, alkalinity, etc. were taken from
the measured data. The overall structure of the model was
fixed, but the details were evolved. An individual contains
two growth functions (BA for algae and BZ for zooplankton
concentrations), which update the corresponding variables. The
target is a growth model that can accurately predict BA. The
grammar for the GGGP system is shown in table II.

b) Fitness cases: (Simulated) data measured at 36 hour
intervals from 1996 to 2005 were used, forming 2424 fitness
cases in all. As is standard in ecological modelling, we used
an RMSE error function (thus we could not guarantee that an
early-terminated individual was less fit than the best-so-far).

D. Evolutionary Parameters

TABLE III. PARAMETER SETTINGS

Number of Runs 60 Generations per Run 51
Population 500 Tournament Size 3
Minimisation Objective SAE (for lake) RMSE
Crossover prob. 0.9 Mutation prob. 0.1
Elite Size 2
Function Set (except Lake, Parity) +,−,×, /, exp, log, sin, cos
Function Set (Parity) AND,OR,NAND,NOR
Function Set (Lake) See table II

The evolutionary settings used in all experiments are shown
in table III.

V. RESULTS

A. Costs and Benefits of Early Termination

Table IV presents the performance (in terms of mean best
fitness) of the original and early termination algorithms on
all problems, together with the ratio, showing how much the
performance deteriorated. The first notable point is that in gen-
eral it did not deteriorate: early termination actually enhanced
performance in the majority of cases, and on average the per-
formance improvements somewhat exceeded the performance
decrements. Thus the fitness landscape smoothing discussed
in [8] outweighed other effects – though not, unfortunately, in
the semi-real-world Lake problem.

Table IV also shows the corresponding time performances.
Here, as would be expected, the improvements ranged from



TABLE IV. MEAN BEST FITNESS AND RUNNING TIME SPEEDUP: ORIGINAL AND EARLY TERMINATING ALGORITHMS

Problem Problem Mean Best Fitness Mean Running Time (millisecs)
Class Name Original Early Term. Ratio Original Early Term. Ratio

Qrt 2.97±1.35 1.09±1.68 2.72 57817±1337 13850±809 4.17
Root 2.93±2.28 3.43±3.42 0.85 72430±15781 31125±9070 2.33

Algebraic 2vFrac 43.22±9.42 39.57±9.81 1.09 147723±23488 85853±19949 1.72
2vQrt 618±310 818±280 0.76 150609±30796 77942±24708 1.93
Trg1 5.20±4.05 3.01±2.74 1.73 76256±18901 35858±17541 2.13

Trigonometric Trg2 3.58±1.97 3.49±2.41 1.02 89180±16233 46403±15448 1.92
2vTrg1 191±19 167±36 1.14 128473±24779 102691±22913 1.25
2vTrg2 228±273 194±255 1.18 149180±27371 73617±46872 2.02

Differential DE1 28.91±10.75 28.2±7.64 1.02 277641±86364 162727±43934 1.71
Equation DE2 153±132 105±76 1.466 200224±65314 103176±40509 1.94

E5P 6.95±0.91 7.38±1.08 0.94 17170±2053 14776±3080 1.16
Parity E6P 19.83±1.29 20.35±1.23 0.97 40083±3648 41361±4095 0.96

E7P 50.15±1.67 49.72±1.51 1.01 93414±8548 97098±9980 0.96
Real Lake 17.74±3.20 21.01±2.64 0.84 268642±71929 172266±87096 1.56

substantial to negligible or, in a couple of cases, slightly
negative (presumably, in these cases, the cost of checking for
early termination outweighed gains from early termination;
it is notable that these were among the fastest runs, so that
evaluation costs were relatively low). Overall, the benefits of
early termination are modest, but this is to be expected of the
conservative termination policy used (only terminating when
we could be virtually certain that the individual was worse
than the best-so-far, and terminating very early only if it was
very much worse). The gains would undoubtedly increase with
a more optimistic policy. However performance improvement
is not the focus of this paper: our aim is to examine possible
determinants of performance improvement.

B. Classifying Performance

TABLE V. CLASSIFICATION OF PROBLEMS BY EARLY TERMINATION

EFFECTS

Running Time
Performance Similar Improved

Lake
Worse Root

2vQrt
E5P DE1

Similar E6P Trg2
E7P 2vFrac

DE2
Qrt

Improved Trg1
2vTrg1
2vTrg2

Table V classifies the different problems by two char-
acteristics: whether or not there is a speed-up from early
termination, and whether the resulting performance is better
or worse than, or similar to, the original performance. The
combination yields six classes, two being unrepresented. We
would like to find what is common among them, to understand
when early termination will be useful.

The only group with little or no improvement in running
time were the Boolean parity problems: changes were so small
that most termination must have been late, close to the last
stage. Thus there was little change in resulting fitness. But
it would be desirable to understand why termination was
generally so late. Of the problems which did see speed-up,
some saw an improvement in performance, others a decrease,
and still others little change. We would like to understand why
we saw these effects: what problem properties determined this
behaviour?

C. The Effect of Estimation Accuracy

One potential determinant of the effect of early termination
is the accuracy of fitness estimates: if early estimates were
accurate in all generations, and at all stages of the fitness
estimation process, then we would expect early termination
to have no effect on the progress of runs (because early-
terminated individuals would be ranked in the same order
as they would have been under normal conditions, and thus
the same individuals would be selected, meaning that the
trajectory of evolution would be unchanged). Of course this
is unachievable: there will be some error, and so there will be
some change to the evolutionary trajectory. So the interesting
question is whether that trajectory, either over generations or
over evaluation stages (or perhaps both) can help to explain
the behaviours we observed.

To assess this, we completed a further series of runs,
without early termination, recording at selected stages of
fitness evaluation the estimated fitness that would have been
generated by early termination. Due to space constraints, these
stages were chosen logarithmically – more in the early stages,
fewer later, the actual stages depending on the problem. At
each stage of fitness estimation, over all individuals in the
population, we compared the rank order resulting from early
termination with that resulting from full evaluation. We needed
some way to measure the difference between these orders. We
used the sum of the absolute differences in ranks over the
population, as shown in equation 4:

dorder(i) =
N∑

j=1

|P (rank(j, i))− P (rank(j,N))| (4)

where i is the stage number, N is the population size,
rank(j, i) is the rank of individual j at stage i, P (r) is the
probability that individual of rank r is chosen in a tournament
under the assumption that all individuals have distinct fitnesses

and the worst one is ranked first, i.e.
rk−(r−1)k

Nk , k being the
tournament size [21].

In generating plots, we averaged the distance dorder across
all runs. In figure 1, we further averaged across all stages so
that we could see the trajectory over generations (since all
problems used the same number of generations, no normal-
isation of the x axis was required). In figure 2, we instead
averaged across all generations so that we could see the
trajectory over the stages of fitness case evaluation. However in
this case, different problems had different numbers of stages;



Fig. 1. Mean Order Difference dorder (Averaged over Runs and Stages) by Generation for All Problems

Fig. 2. Mean Order Difference dorder (Averaged over Runs and Generations) by Fitness Case Proportion for All Problems
(the value for 2vQrt at 0.0 is off-scale at 1.78).

we normalised each problem by the total number of fitness
case evaluations, so that all had the same x-axis scale, 0.0
to 1.0. In figures 1 and 2, we used similar line qualities for
problems with the same behaviour in table V, so that where the
property summarised in the table helps to classify the problem,
we should see similar line qualities grouping together.

It is apparent from both that the Boolean problems group
together: early termination generates the worst estimates, so
that early termination will generate substantial noise in the es-
timates – perhaps large enough to deteriorate solution quality.
However the case for the other problems is more complex.

Figure 1 does not give us much further useful information.
There is little to differentiate the problem classes, and for
most problems there is little trend in the order distance by

generation, though it is worth noting that the 2vTrg2 and DE1
problems do exhibit a decreasing trend with generations (that
is, the rank ordering generated by early termination improves
as the run progresses); the other problems do not exhibit this
trend, except perhaps weakly in DE2 (so perhaps this is a
commonality generated by the form of the DE fitness function).

Figure 2 shows more structure: in general, the fitness order-
ing monotonically converges toward the final as more fitness
cases are evaluated, but the shapes of the curves differ greatly,
being upward convex in the case of the Boolean problems and
DE2, and concave in the other cases: that is, early estimates
are much better for the other problems. If anything, though, the
problems with the worst early-termination performance (Lake,
Root, 2vQrt) exhibited the least change in fitness ordering with



early termination – in the case of 2vQrt, termination after 10%
of the fitness cases would yield a very accurate approximation
of the final fitness ordering, and yet this problem saw the
worst decrement in performance from early termination. Thus
it seems that the extent or trajectory of fitness order changes
with evaluation stage offer us only limited guidance as to
which problems are likely to benefit from early termination.

We repeated this analysis with the symmetric Kullback-
Leibler divergence, and both directions of the asymmetric
divergence, with essentially the same results (omitted for lack
of space): the exact metric does not seem to matter.

D. The Exploration - Exploitation Tradeoff and Early Termi-
nation

Another reasonable hypothesis is that early termination,
in generating evaluation noise, provides additional exploratory
power to the algorithm (the essence of the explanation in [8]),
and thus helps it to overcome attraction to local optima.
One way to evaluate this hypothesis is to look at the fitness
curves of the evolution, since the shape of the fitness curve is
correlated with the need for exploration. Figure 3 shows the
mean best fitness by generation for runs with full evaluation.
Again, we see that we can readily distinguish the Boolean
problems, which are still seeing improvements in performance,
but it is difficult to otherwise separate the early-termination
performance classes in this figure. The 2vTrg1 performance
curve stagnates at fairly poor fitness levels, suggesting that
greater exploration might be desirable, and indeed we do
see a performance improvement with early termination – yet
the Lake problem exhibits a similar curve, but suffers a
deterioration in performance with early termination.

We analysed this in another way by increasing the explo-
ration in these algorithms more directly, increasing the rate of
mutation in runs without early termination, on the basis that,
if the effects of early termination noise were due to increased
exploration, then directly increasing the exploration should
show similar behaviour. The results (omitted due to lack of
space) were similarly equivocal.

VI. DISCUSSION AND CONCLUSIONS

Early termination is a promising technique. In the very
conservative form presented here it offers reasonably substan-
tial reductions in computational cost with no loss, or even
some quite substantial gains, in performance. However some
problems see either little improvement in computational cost
or significant decrements in performance. It is worth trying,
since on average the effect is likely to be beneficial – and the
cost of implementing it is low.

We have investigated candidate explanations for the differ-
ences in behaviour on different problems, based both on the
quality of the fitness estimates generated by early termination,
and on the probable exploration requirements of the problem
domain. They were able to distinguish problems the likely
improvement in computational cost. But we were not able
to generate good predictions of the effect on performance.
Thus the best advice we can give is to try it and see. Finding
criteria that can provide good forecasts of the effects of early
termination is an important future research direction.

Early termination is a potentially valuable addition to the
arsenal of GP practitioners. In the very conservative form
used here, its application is limited to problems with at least
expected monotonicity in the fitness function. This is still,
of course, a vast array of problem domains, covering for
example all lk norms, and indeed almost any conceivable error
functions. But we probably don’t need to be as conservative
in terminating early – we don’t need a guarantee that the
current individual is fairly unfit before we terminate, we just
need some reasonable confidence (precisely because of the
well-known tolerance of evolutionary algorithms for error).
Thus early termination should be extensible to other problem
domains so long as we can find reasonable theory for the mixed
time series/learning problem as delineated in section III. We
see this also as an important direction for future research.

One important advantage of early termination is its seem-
ing orthogonality to other methods for speeding up GP. In
particular, there is no in-principle problem in combining early
termination with surrogate or clustering methods; in neither
case does the method need as accurate estimates of the fitness
of its training cases when they are unfit as it does when
they are highly fit (although current versions of surrogacy
and clustering methods do not take advantage of this). For
surrogacy methods in particular, noise in the less fit training
examples may even be an advantage, forcing the surrogacy
learner to concentrate on the highest fitness region of the search
space, where its predictions are most important. So combining
surrogacy and early termination methods is one of our highest
priorities in future research.

As early termination changes the evolutionary trajectory,
the generalisation ability of solutions may change as well. In
a preliminary study, we measured the mean fitness of the best
individuals over a test set (for all problems except parity),
using the same settings. The ratio of mean best fitness between
runs with and without early termination was generally similar
to that for training error. In four of the eleven problems, the
direction of change was the same, though the degree of change
increased by between 10% and 20%.

While the current early termination controls only the ter-
mination point of each fitness evaluation, early stopping [22],
which is used to fight overfitting in training a neural network,
controls when the run should stop. They are completely
orthogonal, so that they can be combined together, offering the
prospect of both better generalisation and reduced evaluation.
We intend to investigate this in the near future.

Thus more generally, we see early termination as a tech-
nique that warrants both experimental and theoretical research,
to determine how it may most effectively be used. We hope
that this paper represents a useful first step in that direction.
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A. Ekárt, L. Vanneschi, and A. I. Esparcia-Alcázar, Eds., vol. 4445.
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