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Given a new graph,
how to find the best graph learning model
(e.g., link prediction model)?
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Given a new graph,
how to find the best graph learning model?
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Given a new graph,
how to find the best graph learning model?
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(a) MetaGL infers the best model with no model training/evaluation.
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(b) Existing model selection methods train/evaluate multiple models.
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Given a new graph,
how to find the best graph learning model?
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(a) MetaGL infers the best model with no model training/evaluation.
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(b) Existing model selection methods train/evaluate multiple models.
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(c) MetaGL consistently performs the best.
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Problem Formulation

Given graph learning models
——
¥ i
new graph G performance matrix P
Select

 the best model M* without training/evaluating any
model on the new graph G
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Proposed Framework: MetaGL
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Details
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Details
M etaGL . Meta-Graph "

Features

Estimating performance p;; of model M; on graph G;

i~ Py = (f(W[ ; pm)D, f(V >>

meta- graph graph model
feature  factor factor
GNN-based embedding function f ()

Meta-Learning Objective

* Optimize to find the best model via top-1 probability-
based objective
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Details
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Meta-learner in MetaGL operates on a heterogeneous

graph consisting of models and graphs
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Details

MetaGL: w—
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Online Model Prediction g o

Best model M* = arg maX(f(W[mtest; ¢ (Miese) ), f(V])>
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MetaGL infers the best model M* with no model training/evaluation
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Experiments

Research Questions

RQ1. How accurately can MetaGL select the best model?

RQ2. How effective are the meta-graph features?
RQ3. How efficient is MetaGL?

MetaGL: Evaluation-Free Selection of Graph Learning Models via Meta-Learning



RQ1. Model Selection w/ Fully Observed Perf.

Method MRR AUC NDCG@1

Random Selection 0.011 0.490 0.745

Global Best-AvgPerf 0.163 0.877 0.932

, Global Best-AvgRank 0.103 0.867 0.930
Simple - Gl AT 0222 0905 0947

MetaGL_ISAC 0.202 0.887 0.939

MetaGL_S2 0.170 0.910 0.945

o MetaGL_ALORS 0.190 0.897 0.950

Opt’g”zaj"’” MetaGL_NCF 0.140 0.869 0.934

e MetaGL_MetaOD 0.075 0.599 0.889

MetaGL (Ours) 0.259 0.941 0.962
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RQ1. Model Selection w/ Partially Observed Perf.
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RQ2. Effectiveness of Meta-Graph Features
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RQ3. Model Selection Efficiency
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Conclusion

MetaGL: Meta-Learning

Framework & Features
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(a) MetaGL infers the best model with no model training/evaluation.
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(b) Existing model selection methods train/evaluate multiple models.
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(c) MetaGL consistently performs the best.
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