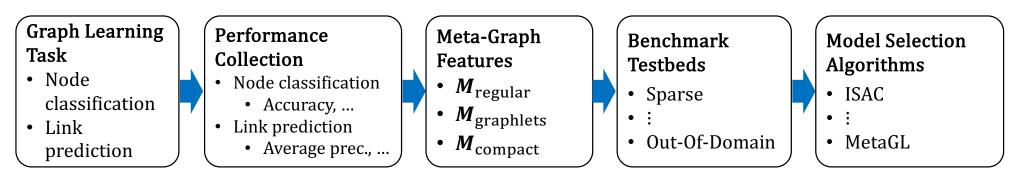

GLEMOS: Benchmark for Instantaneous Graph Learning Model Selection

Introduction

The choice of a graph learning (GL) model (i.e., a GL algorithm and its hyperparameter settings) has a significant impact on the performance of downstream tasks. However, selecting the right GL model becomes increasingly difficult and time consuming as more and more GL models are developed. Accordingly, it is of great significance and practical value to equip users of GL with the ability to perform a near-instantaneous selection of an effective GL model without manual intervention. Despite the recent attempts to tackle this important problem, there has been no comprehensive benchmark environment to evaluate the performance of GL model selection methods. To bridge this gap, we present GLEMOS, a comprehensive benchmark for instantaneous GL model selection, which makes the following contributions.

- Extensive Benchmark Data with Multiple GL Tasks. GLEMOS provides extensive benchmark data, including the performances of 366 models on 457 graphs over fundamental GL tasks, i.e., link prediction and node classification.
- **Comprehensive Evaluation Testbeds.** GLEMOS designs multiple evaluation settings, and assesses how effectively representative model selection techniques perform in these different settings.
- Extensible Open Source Environment. GLEMOS is designed to be easily extended with new models, new graphs, and new performance records.
- Future Research Directions. We discuss the limitations of existing model selection methods and highlight future research directions.

Instantaneous Graph Learning Model Selection

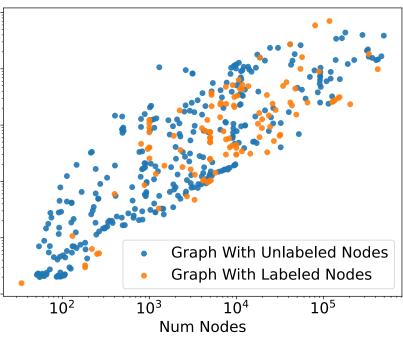

Instantaneous Graph Learning Model Selection

Via instantaneous graph learning model selection, the best model to deploy on the new graph can be found without performing computationally expensive model training and evaluations.

Namyong Park, Ryan Rossi, Xing Wang, Antoine Simoulin, Nesreen Ahmed, Christos Faloutsos

Overview of GLEMOS

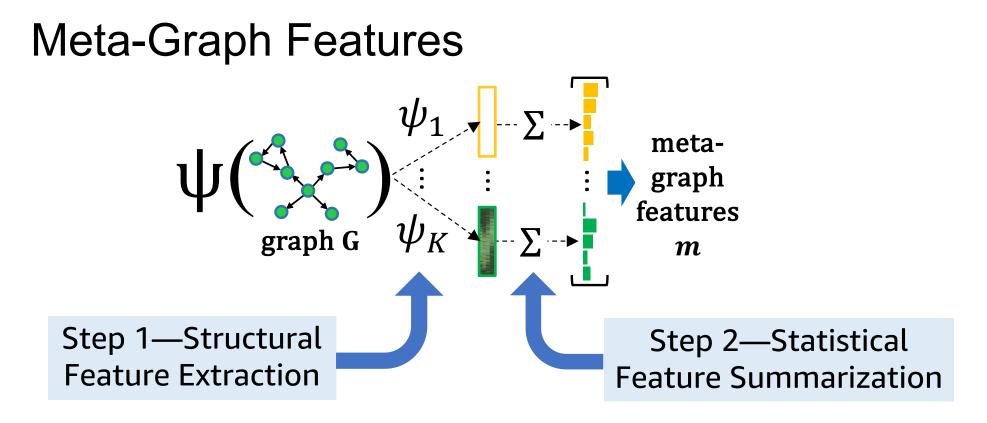
GLEMOS provides a comprehensive benchmark environment, covering the steps required to achieve effective instantaneous GL model selection, with multiple options for major building blocks.


Performance Collection

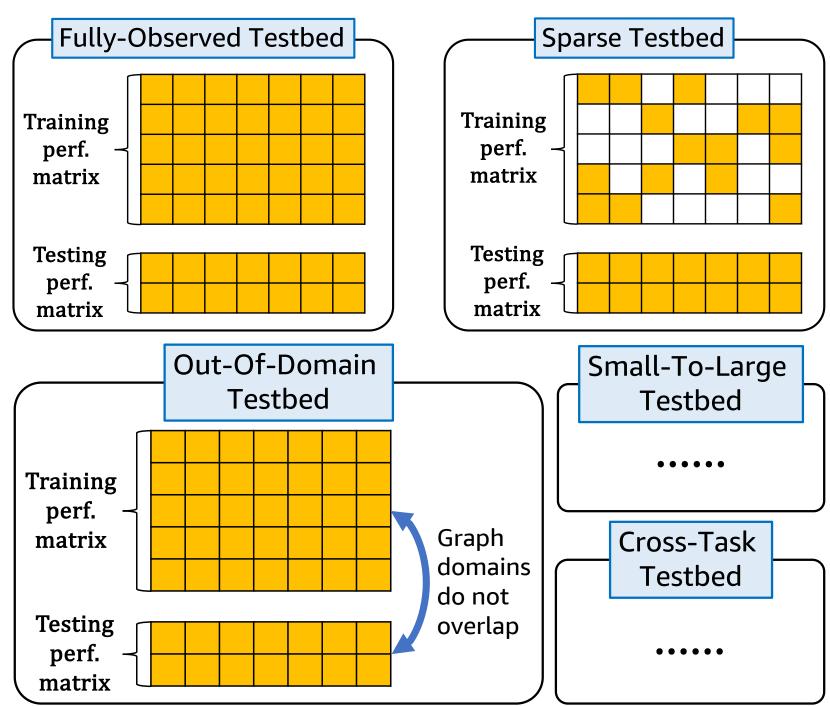
GLEMOS covers representative and diverse sets of graphs and GL models.

<u>Graphs</u>

	Node Classification	Link Prediction	- 10 ⁷
Total graphs	128	457	۔ م
• # nodes	34–422k	34–496k	Edges
 # edges 	156–7M	156–7M	^Е И 10 ⁴
 # node feats 	2–61k	2–61k	
 # node classes 	2–195	N/A	10 ³
• # data domains	25	37	10 ²


<u>Models</u>

NC: Applicable for node classification. LP: Applicable for link prediction.


Method	NC	LP	Count	Method	NC	LP	Count
GCN	\checkmark	\checkmark	30	GraRep	\checkmark	\checkmark	6
GraphSAGE	\checkmark	\checkmark	24	DGI	\checkmark	\checkmark	24
GAT	\checkmark	\checkmark	40	node2vec	\checkmark	\checkmark	72
GIN	\checkmark	\checkmark	10	Label Prop.	\checkmark		16
EGC	\checkmark	\checkmark	28	Jaccard's Coeff		\checkmark	1
SGC	\checkmark	\checkmark	10	Resource Alloc.		\checkmark	1
ChebNet	\checkmark	\checkmark	27	Adamic/Adar		\checkmark	1
PNA	\checkmark	\checkmark	32	SEAL		\checkmark	36
Spectral Emb.	\checkmark	\checkmark	8				

Total Count 366

• GLEMOS provides multiple predefined sets of meta-graph features, with the largest one having more than 1,000 features.

Benchmark Testbeds

Instantaneous Model Selection Algorithms

Algorithm	C1. Use meta- features	C2. Use prior performances	C3. Optimizable
Random Selection			
GB-Avg. Perf		\checkmark	
GB-Avg. Rank		\checkmark	
ISAC	\checkmark	\checkmark	
AS	\checkmark	\checkmark	
Supervised Surrogates	\checkmark	\checkmark	\checkmark
ALORS	\checkmark	\checkmark	\checkmark
NCF	\checkmark	\checkmark	\checkmark
MetaOD	\checkmark	\checkmark	\checkmark
MetaGL	\checkmark	\checkmark	\checkmark