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Knowledge Graph
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An example knowledge graph on movies and related entities
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Node Importance
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Applications
Query disambiguation

“Beethoven”
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• Search
• Information extraction

*	Image	source:	www.freepik.com

• Quality control for KGs

Applications
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Importance Score
• Often we can observe a signal that indicates node importance
• Examples

Total gross Number of votes Number of pageviews
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Node Importance Estimation
Input
• A knowledge graph
• Input scores for some nodes 

(e.g., revenue)
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Node Importance Estimation
Output
An importance score for 
each node
• Non-negative real value
• Reflects the popularity 

of a node
• Closely reconstructs 

input scores

Input
• A knowledge graph
• Input scores for some nodes 

(e.g., revenue)
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Node Importance Estimation: Intuition
• Which artist is more important?
• Artist 1? Artist 2?
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Requirements
Neighborhood Awareness
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Node Importance Estimation: Intuition
• Which artist is more important?
• Artist 1? Artist 2?
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Node Importance Estimation: Intuition
• What if there is a different 

predicate, e.g., a composer?
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Node Importance Estimation: Intuition
• We have access to importance 

scores for some nodes
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Node Importance Estimation: Intuition
• What if the score distribution 

changes?
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Not a “Solved Problem” 

Requirements PageRank Personalized 
PageRank HAR

Neighborhood Awareness ✓ ✓ ✓

Centrality Awareness ✓ ✓ ✓

Input Score Awareness ✓ ✓

Edge Type Awareness ✓

Flexible Adaptation
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Our Contributions
We explore supervised 
machine learning 
algorithms for this 
task

Linear	
regression

Random	
Forests

Neural	
Networks

Graph	
Neural	

Networks

We present GENI, 
a GNN-based method

We provide empirical 
evidence and analysis 
of GENI on real-world 
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Proposed Method: GENI

Requirements PageRank Personalized 
PageRank HAR GENI

Neighborhood 
Awareness

✓ ✓ ✓ ✓

Centrality Awareness ✓ ✓ ✓ ✓

Input Score Awareness ✓ ✓ ✓

Edge Type Awareness ✓ ✓

Flexible Adaptation ✓

• We propose GENI, a Graph neural network (GNN) for 
Estimating Node Importance in a KG
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Proposed Method: GENI
• We propose GENI, a Graph neural network (GNN) for 

Estimating Node Importance in a KG

Requirements Our Solution
Neighborhood Awareness Score Aggregation
Edge Type Awareness Predicate-Aware Attention
Centrality Awareness Centrality Adjustment
Input Score Awareness

Supervised GNN framework
Flexible Adaptation
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Idea 1: Score Aggregation
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Idea 1: Score Aggregation

• ℓ:	layer	number
• 𝑠ℓ 𝑖 :	estimated	score	of	node	𝑖
• 𝒩 𝑖 :	neighbors	of	node
• 𝛼&'ℓ :	node	𝑖’s	attention	on	node	𝑗

𝑠ℓ 𝑖 = 𝜎+ , 𝛼&'ℓ 𝑠ℓ-.(𝑗)
�

'∈𝒩 & ∪{&}
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Idea 2: Predicate-Aware Attention
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Idea 2: Predicate-Aware Attention

𝑠ℓ 𝑖 = 𝜎+ , 𝛼&'ℓ 𝑠ℓ-.(𝑗)
�

'∈𝒩 & ∪{&}

𝛼&'ℓ = 𝑓 𝑠ℓ-. 𝑖 , 𝑠ℓ-. 𝑗 , 𝑎⃗ℓ, 𝑝⃗&'

• 𝛼&'ℓ :	node	𝑖’s	attention	on	node	𝑗 computed	
by	the	ℓ-th	layer

• 𝑠ℓ 𝑖 :	estimated	score	of	node	𝑖
• 𝑝⃗&':	predicates	of	between	nodes	𝑖 and	𝑗
• 𝑎⃗ℓ:	attention	parameters
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Idea 3: Centrality Adjustment
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Idea 3: Centrality Adjustment

𝑠∗ 𝑖 = CentralityAdjustment(𝑠K 𝑖 , 𝑑(𝑖))

In-degree	of	a	node

• 𝑠∗ 𝑖 :	centrality-adjusted	score	
estimation	of	node	𝑖

• 𝑠K 𝑖 :	estimated	score	of	node	𝑖 before	
centrality	adjustment

• 𝑑 𝑖 :	in-degree	of	node	𝑖
• 𝐿:	final	layer

Estimated	score	before	centrality	adjustment
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e.g., node2vec embeddings, 
distributed bag-of-words 
representation

Estimating	Node	Importance	in	KGs	Using	GNNs	(Namyong	Park	et	al.) 27KDD	2019



Score Aggregation (SA) Head

!⃗#$
!⃗%

!⃗#&

'%#$

!⃗#(

)* +,

!⃗#-

)* +. )* / )* +0 )* +1

'%#( '%% '%#& '%#-

), /

Centrality Adjustment

)∗ /

Scoring Network

Score Aggregation

Model Architecture: One Layer, One Head

• 𝑠∗ 𝑖 = Centr. Adj. (𝑠. 𝑖 , 𝑑(𝑖))

• 𝑧&: feature vector of node 𝑖

• 𝑠P 𝑖 = ScoringNetwork(𝑧&)

• 𝛼&'. = 𝑓 𝑠P 𝑖 , 𝑠P 𝑗 , 𝑎⃗., 𝑝⃗&'

• 𝑠. 𝑖 = 𝑅𝑒𝐿𝑈 ∑ 𝛼&'. 𝑠P(𝑗)�
'∈𝒩 & ∪{&}

e.g., node2vec embeddings, 
distributed bag-of-words 
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e.g., node2vec embeddings, 
distributed bag-of-words 
representation
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Model Architecture: Multi Layer, 
Multi Head
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Experiments: Baselines
• Non-trainable approaches
• PageRank (PR)
• Personalized PageRank (PPR)
• Hub, Authority, and Relevance score (HAR)

• Supervised approaches
• Linear regression (LR)
• Random forests (RF)
• Neural networks (NN)
• Graph attention networks (GAT)
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Experiments: Datasets
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Experiments: Evaluation Strategies
We answer the following questions
[Q1] How well does each method estimate node importance 
w.r.t. the given input score type?
à “In-domain” evaluation

[Q2] How well does the estimation of each method 
generalize to the node of unseen types?
à “Out-of-domain” evaluation
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Experiments: Evaluation Strategies
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In-Domain Evaluation

NDCG@100,
higher	is	
better

GENI	(leftmost)	outperforms	baselines
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In-Domain Evaluation

NDCG@100,
higher	is	
better

GENI	(leftmost)	outperforms	baselines
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Out-Of-Domain Evaluation
GENI	(leftmost)	outperforms	baselines

NDCG@100,
higher	is	
better
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Conclusion
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Idea 1: Score Aggregation
• Initial scores 𝑠P ⋅ 	are computed by ScoringNetwork, a feed 

forward NN trained jointly with the rest of GENI

Score.

Score^

Score_

Score`

Scorea

• 𝑧&:	feature	vector	of	node	𝑖
• 𝑠P 𝑖 :	initial	score	estimation	of	node	𝑖
• 𝑠ℓ 𝑖 :	estimated	score	of	node	𝑖
• 𝒩 𝑖 :	neighbors	of	node	𝑖
• 𝛼&'ℓ :	node	𝑖’s	attention	on	node	𝑗

𝑠P 𝑖 = ScoringNetwork(𝑧&)

𝑠ℓ 𝑖 = 𝜎+ , 𝛼&'ℓ 𝑠ℓ-.(𝑗)
�

'∈𝒩 & ∪{&}
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Idea 2: Predicate-Aware Attention
• Model how predicates affect the importance of neighboring 

entities by using shared self-attention mechanism

Score.

Score^

Score_

Score`

Scorea

𝛼&'ℓ =
exp	(𝜎d(∑ 𝑎⃗ℓe[𝑠ℓ-.(𝑖)||𝜙 𝑝&'i ||𝑠ℓ-.(𝑗)]�

i ))
∑ exp	(𝜎d(∑ 𝑎⃗ℓe[𝑠ℓ-.(𝑖)||𝜙 𝑝&ki ||𝑠ℓ-.(𝑘)]�

i ))�
k∈𝒩 & ∪{&}

• 𝛼&'ℓ :	node	𝑖’s	attention	on	node	𝑗 computed	by	the	
ℓ-th	layer

• 𝑝&ki:	predicate	of	𝑚-th edge	between	nodes	𝑖 and	𝑗
• 𝜙(⋅):	mapping	from	a	predicate	to	its	embedding
• 𝑠ℓ 𝑖 :	estimated	score	of	node	𝑖
• 𝒩 𝑖 :	neighbors	of	node	𝑖
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Idea 3: Centrality Adjustment

Score.

Score^

Score_

Score`

Scorea

𝑐 𝑖 = log	(𝑑 𝑖 + 𝜖)

𝑐∗ 𝑖 = 𝛾 ⋅ 𝑐 𝑖 + 𝛽

𝑠∗ 𝑖 = 𝜎+(𝑐∗ 𝑖 ⋅ 𝑠K(𝑖))

• 𝑑 𝑖 :	in-degree	of	node	𝑖
• 𝑐 𝑖 :	initial	centrality	of	node	𝑖
• 𝑐∗ 𝑖 :	scaled	and	shifted	centrality	of	node	𝑖
• 𝑠∗ 𝑖 :	centrality-adjusted	score	estimation	
of	node	𝑖
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Experiments: Evaluation Metrics
• Ranking quality
• NDCG (Normalized Discounted Cumulative Gain)
• Spearman correlation coefficient

• Regression quality
• RMSE (Root-Mean-Squared Error)
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Experiments: Datasets
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Experiments: Evaluation Metrics
• Ranking quality

• NDCG (Normalized Discounted Cumulative Gain)

• Spearman correlation coefficient

• Regression quality
• RMSE (Root-Mean-Squared Error)

DCG@k =,
𝑟&

log^(𝑖 + 1)

k

&x.

NDCG@k = yz{@|
}yz{@|

where	IDCG@k is	an	ideal	DCG	at	position	𝑘

Spearman =
∑ (𝑔�� − 𝑔̅�)(𝑠�� − 𝑠̅�)
�
&

𝑔�� − 𝑔̅�
^	

�
𝑠�� − 𝑠̅�

^	
�

RMSE =
1
𝑉+

, 𝑠 𝑖 − 𝑔(𝑖) ^
�

&∈��

• 𝑟&:	graded	relevance	of	node	at	position	𝑖
• 𝑔⃗, 𝑠:	ground	truth	scores	and	predicted	scores
• 𝑔⃗�, 𝑠�:	rankings	induced	from	𝑔⃗ and	𝑠
• 𝑔̅�, 𝑠̅�:	mean	of	𝑔⃗� and	𝑠�

• 𝑠(𝑖):	predicted	score	of	node	𝑖
• 𝑔(𝑖):	ground	truth	score	of	node	𝑖
• 𝑉+:	a	set	of	nodes	with	importance	scores
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In-Domain Evaluation
GENI	(blue)	outperforms	baselines
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Out-Of-Domain Evaluation
GENI	(blue)	outperforms	baselines
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Experiments: In-Domain Prediction

• GENI performs the best for all datasets
• Supervised models mostly outperform non-trainable ones
• Directly utilizing network connectivity further enhances performance
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Experiments: Out-Of-Domain Prediction

• Prediction is done for entities of some type 𝒯, which is not used for 
training.
• GENI achieves the best results for all KGs
• Non-trainable methods achieves better results on MUSIC10K and TMDB5K
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Experiments: Case Study

• The top-10 movies predicted by GENI is qualitatively better than others
• The top-10 directors by GENI and HAR are similar in quality, having five 

common directors
• GAT’s estimation on directors is much worse than the two others

Top-10	movies	(In-domain	estimation) Top-10	directors	(Out-of-domain	estimation)
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Experiments: In-Domain Regression

• GENI performs better than other supervised baselines
• Overall, the regression performance of supervised methods follows 

a similar trend to their performance in terms of ranking measures

RMSE	of	In-Domain	Prediction	for	Supervised	Methods
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Experiments: 
Flexibility for Centrality Adjustment

• GENI with fixed CA estimates 𝑠∗ 𝑖 = 𝜎+ 𝑐 𝑖 ⋅ 𝑠K 𝑖
• When node centrality correlates well with input scores, fixed CA 

works well
• When node centrality does not agree with input scores, flexible CA 

performs much better than fixed CA
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Experiments: 
Effect of Considering Predicates

• Using “shared embedding” forces GENI to lose the ability to 
distinguish between different predicates
• Results show that GENI makes an effective use of predicates for 

modeling the relation between node importance
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Experiments: Parameter Sensitivity

• Model performance improves as we use a greater number 
of SA layers and SA heads
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Experiments: Parameter Sensitivity

• Model performance tends to improve as we use a greater 
number of hidden layers in scoring networks
• Increasing the dimension of predicate embedding beyond an 

appropriate value negatively affects model performance
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