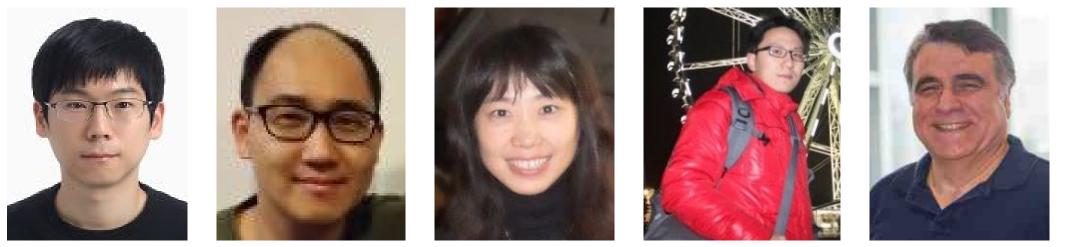
6 Carnegie Mellon University Computer Science Department

Estimating Node Importance in Knowledge Graphs Using Graph Neural Networks

Namyong Park^{1,2}, Andrey Kan², Xin Luna Dong², Tong Zhao², Christos Faloutsos^{1,2} ¹Carnegie Mellon University, ²Amazon



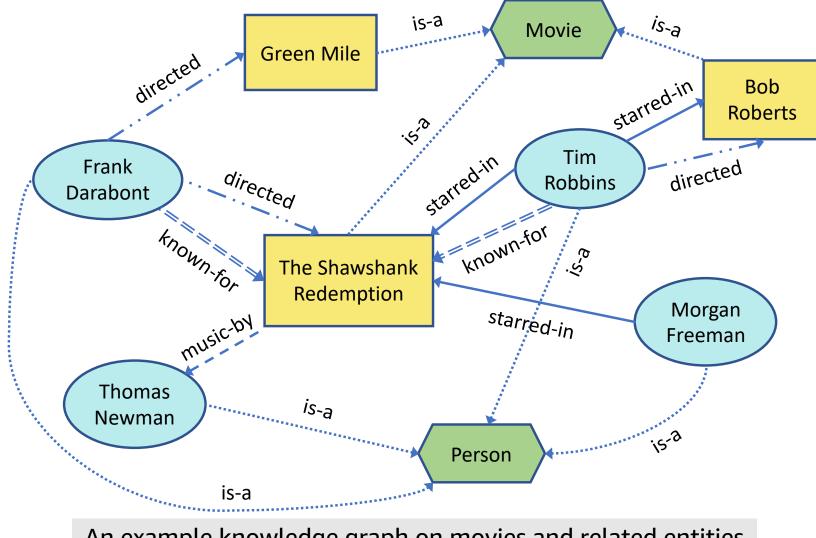
Roadmap

Introduction

- Knowledge Graph
- Problem Definition
- Existing Methods
- Proposed Method: GENI
- Experimental Results
- Conclusion



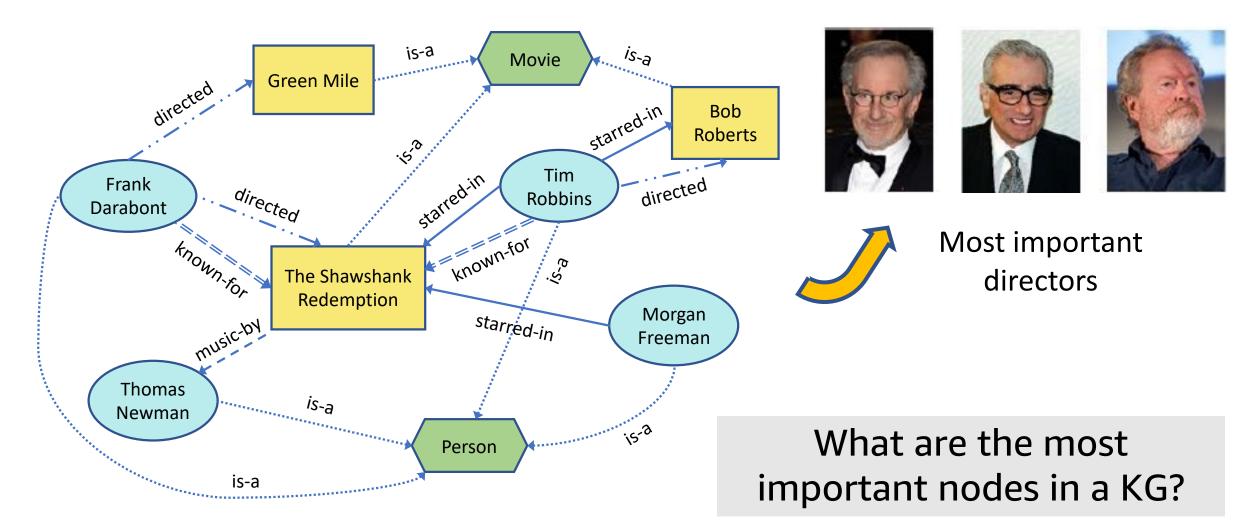
Knowledge Graph



An example knowledge graph on movies and related entities

KDD 2019

Node Importance



KDD 2019

Applications

Query disambiguation

- Search
- Information extraction

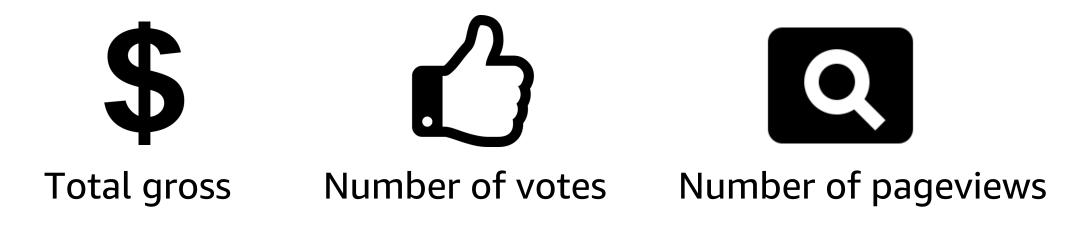
• Quality control for KGs

* Image source: www.freepik.com

KDD 2019

Importance Score

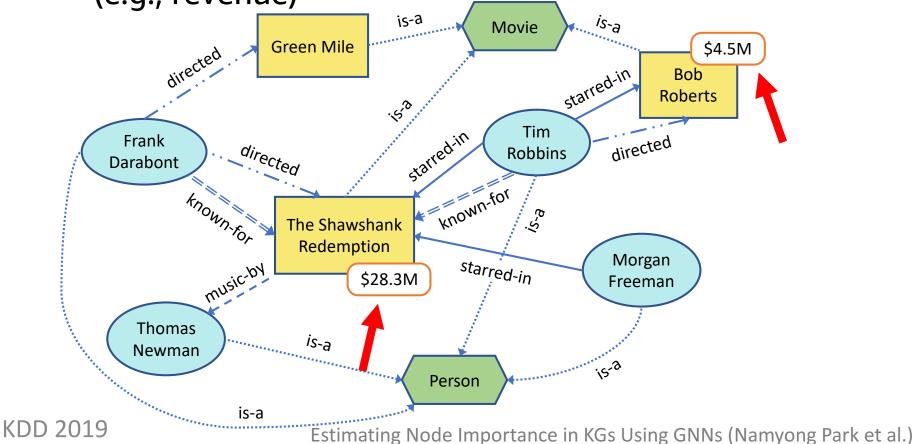
- Often we can observe a signal that indicates node importance
- Examples



Node Importance Estimation

Input

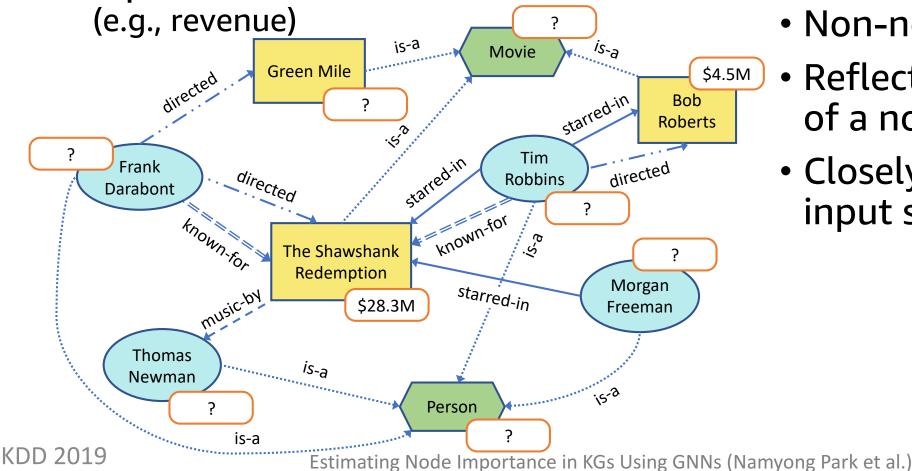
- A knowledge graph
- Input scores for some nodes (e.g., revenue)



Node Importance Estimation

Input

- A knowledge graph
- Input scores for some nodes



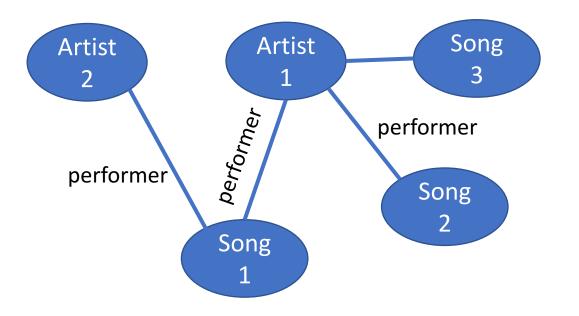
Output

- An importance score for each node
- Non-negative real value
- Reflects the popularity of a node
- Closely reconstructs input scores

- Which artist is more important?
 - Artist 1? Artist 2?

Requirements

Neighborhood Awareness

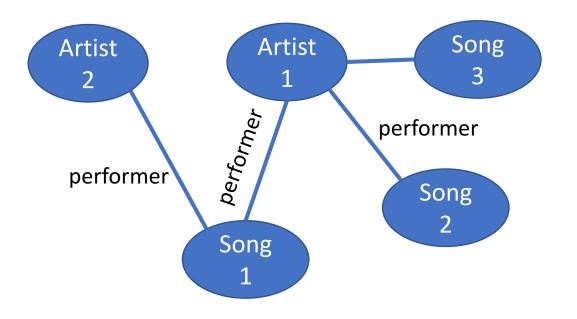


- Which artist is more important?
 - Artist 1? Artist 2?

Requirements

Neighborhood Awareness

Centrality Awareness



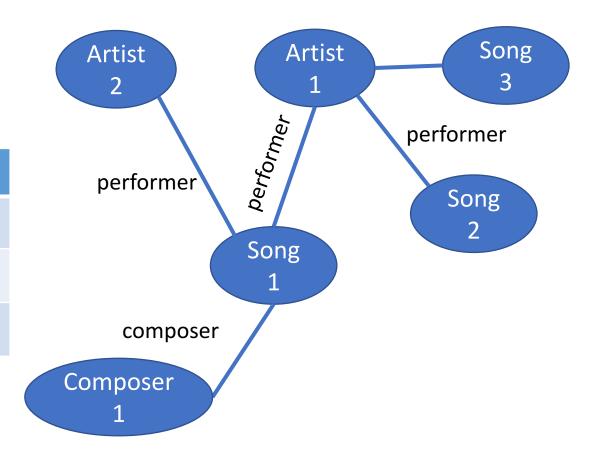
• What if there is a different predicate, e.g., a composer?

Requirements

Neighborhood Awareness

Centrality Awareness

Edge Type Awareness



• We have access to importance scores for some nodes

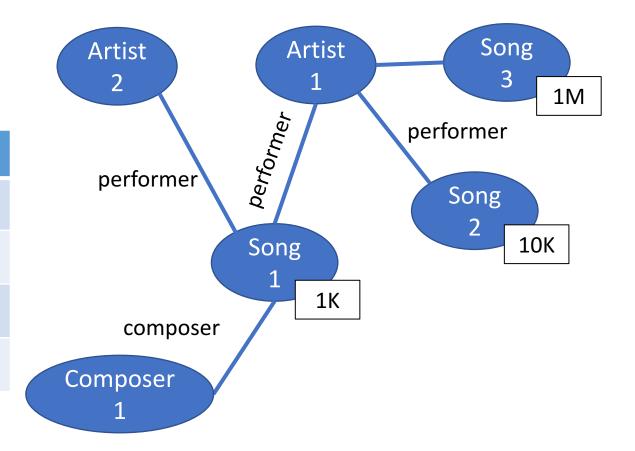
Requirements

Neighborhood Awareness

Centrality Awareness

Edge Type Awareness

Input Score Awareness



• What if the score distribution changes?

Requirements

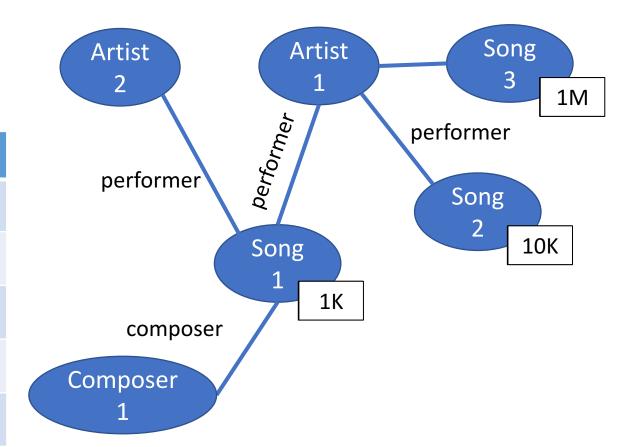
Neighborhood Awareness

Centrality Awareness

Edge Type Awareness

Input Score Awareness

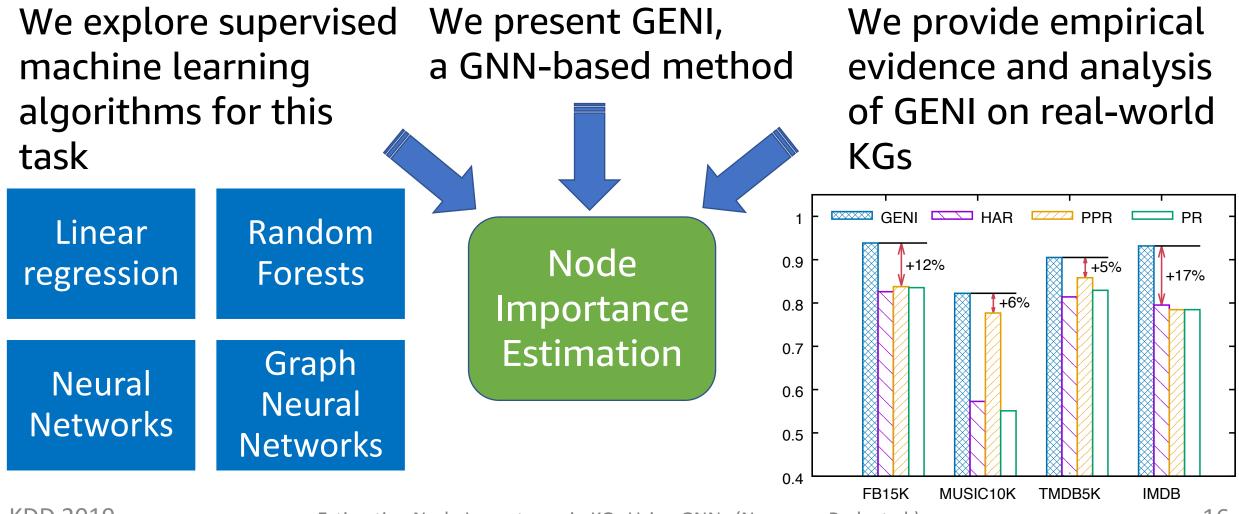
Flexible Adaptation



Not a "Solved Problem"

Requirements	PageRank	Personalized PageRank	HAR
Neighborhood Awareness	✓	✓	\checkmark
Centrality Awareness	✓	✓	\checkmark
Input Score Awareness		✓	\checkmark
Edge Type Awareness			\checkmark
Flexible Adaptation			

Our Contributions



KDD 2019

Roadmap

- Introduction
- Proposed Method: GENI
 - Main Ideas
 - Model Architecture
- Experimental Results
- Conclusion

Proposed Method: GENI

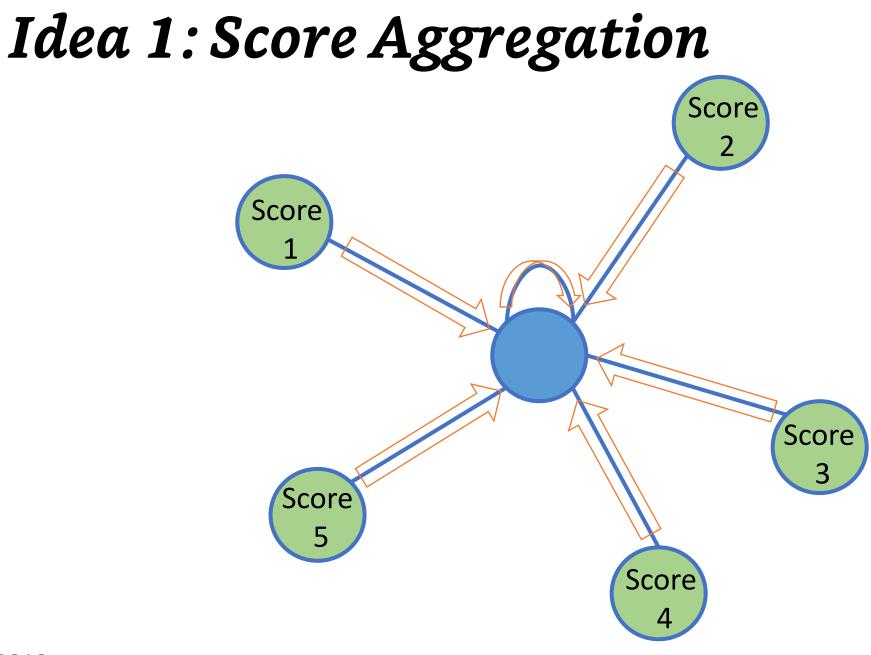
 We propose GENI, a Graph neural network (GNN) for Estimating Node Importance in a KG

Requirements	PageRank	Personalized PageRank	HAR	GENI
Neighborhood Awareness	✓	✓	✓	✓
Centrality Awareness	✓	\checkmark	✓	\checkmark
Input Score Awareness		\checkmark	1	✓
Edge Type Awareness			✓	\checkmark
Flexible Adaptation				\checkmark

Proposed Method: GENI

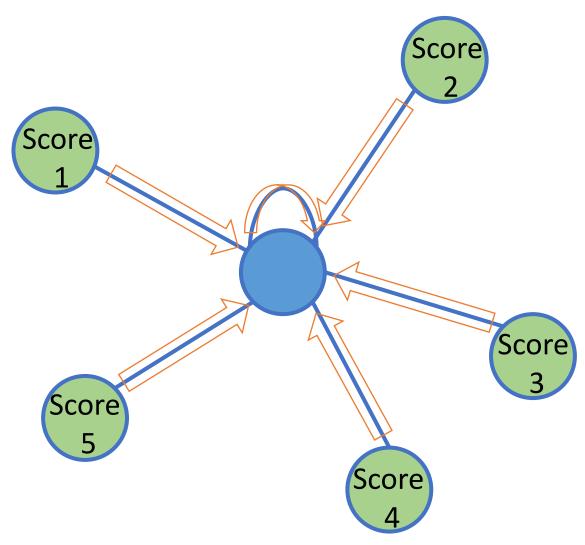
• We propose GENI, a Graph neural network (GNN) for Estimating Node Importance in a KG

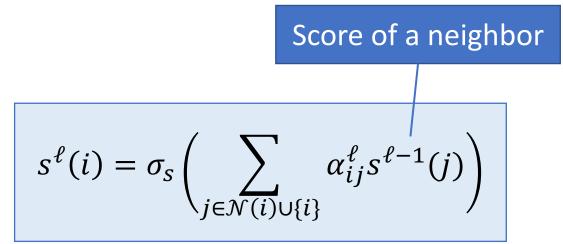
Requirements	Our Solution	
Neighborhood Awareness	Score Aggregation	
Edge Type Awareness	Predicate-Aware Attention	
Centrality Awareness	Centrality Adjustment	
Input Score Awareness	Supervised GNN framework	
Flexible Adaptation		



KDD 2019

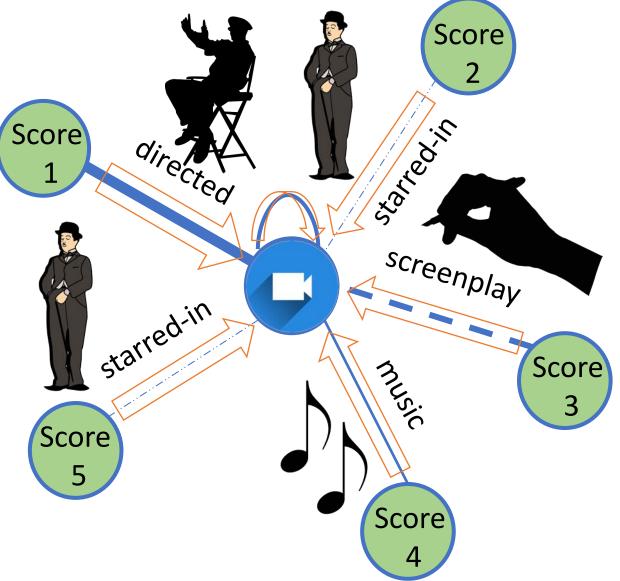
Idea 1: Score Aggregation





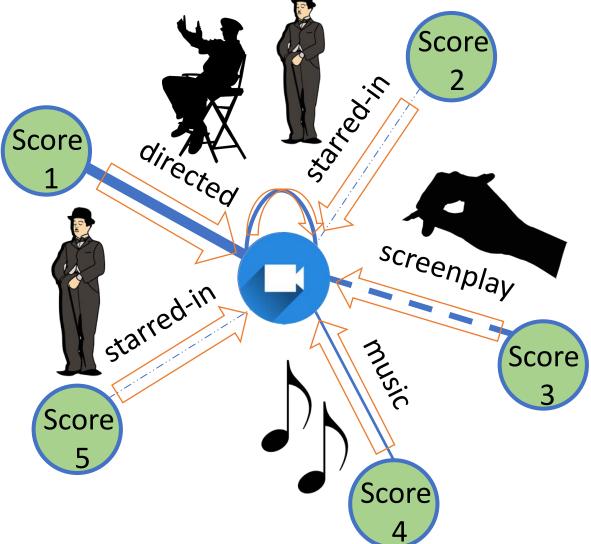
- ℓ : layer number
- $s^{\ell}(i)$: estimated score of node i
- $\mathcal{N}(i)$: neighbors of node
- α_{ij}^{ℓ} : node *i*'s attention on node *j*

Idea 2: Predicate-Aware Attention



KDD 2019

Idea 2: Predicate-Aware Attention



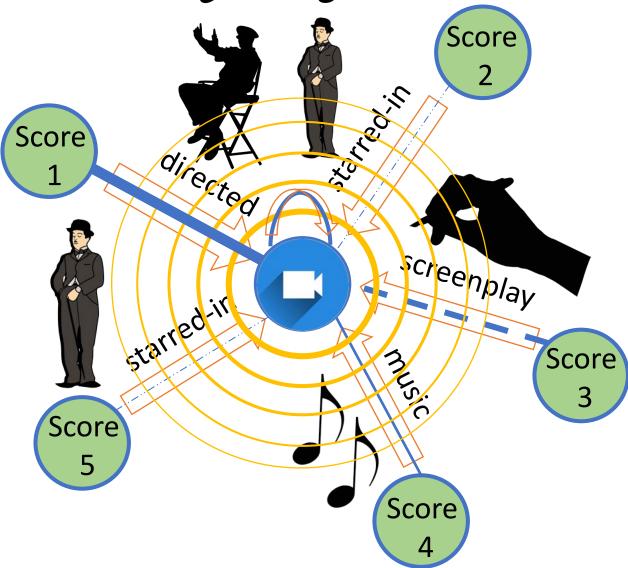
Attention considers predicate

$$s^{\ell}(i) = \sigma_s \left(\sum_{j \in \mathcal{N}(i) \cup \{i\}} \alpha_{ij}^{\ell} s^{\ell-1}(j) \right)$$
$$\alpha_{ij}^{\ell} = f\left(s^{\ell-1}(i), s^{\ell-1}(j), \vec{a}_{\ell}, \vec{p}_{ij}\right)$$

• α_{ij}^{ℓ} : node *i*'s attention on node *j* computed by the ℓ -th layer

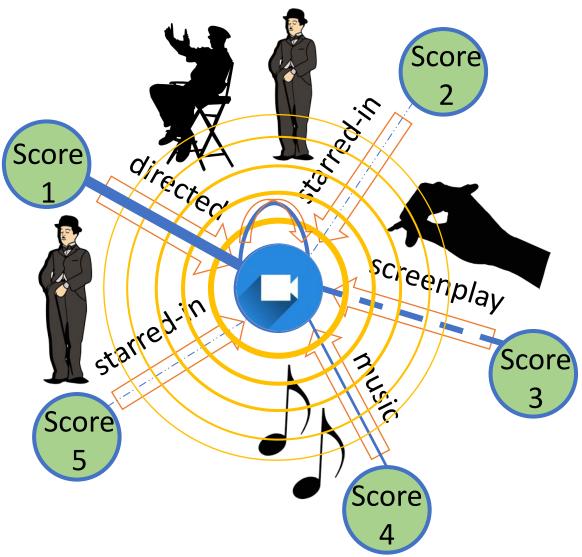
- $s^{\ell}(i)$: estimated score of node *i*
- \vec{p}_{ij} : predicates of between nodes *i* and *j*
- \vec{a}_{ℓ} : attention parameters

Idea 3: Centrality Adjustment



KDD 2019

Idea 3: Centrality Adjustment



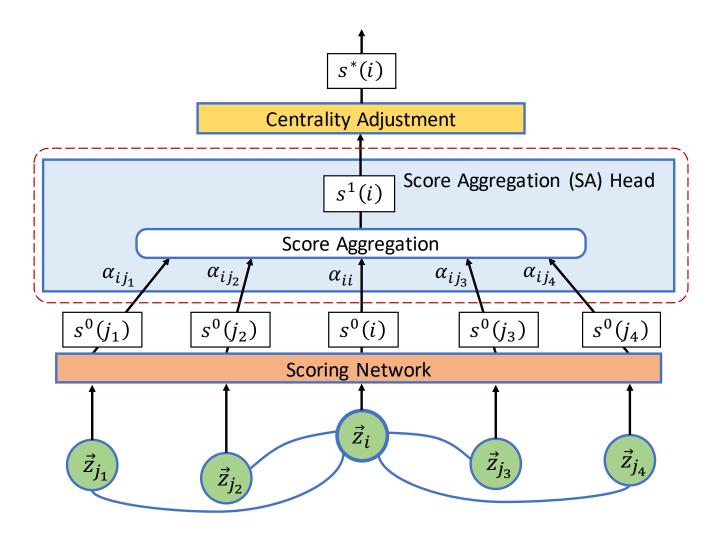
In-degree of a node

$$s^*(i) = \text{CentralityAdjustment}(s^L(i), d(i))$$

Estimated score before centrality adjustment

- $s^*(i)$: centrality-adjusted score estimation of node *i*
- s^L(i): estimated score of node i before centrality adjustment
- d(i): in-degree of node i
- L: final layer

Detail



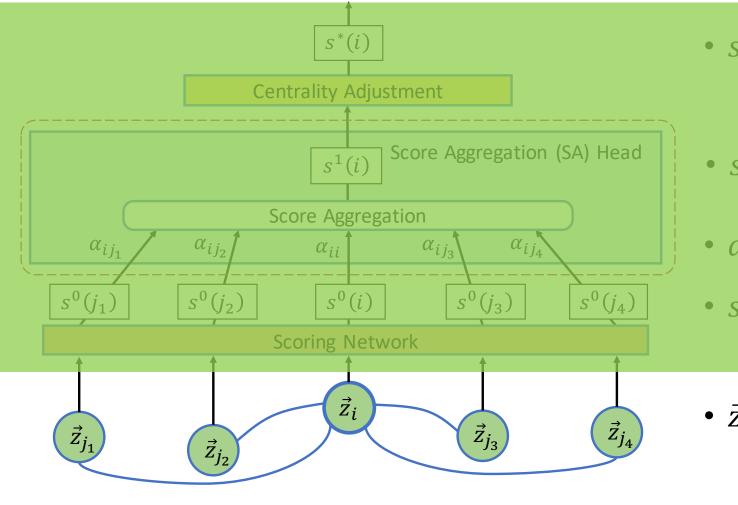
•
$$s^*(i) = \text{Centr.} \text{Adj.} (s^1(i), d(i))$$

•
$$s^1(i) = ReLU\left(\sum_{j \in \mathcal{N}(i) \cup \{i\}} \alpha^1_{ij} s^0(j)\right)$$

•
$$\alpha_{ij}^1 = f(s^0(i), s^0(j), \vec{a}_1, \vec{p}_{ij})$$

•
$$s^0(i) = \text{ScoringNetwork}(\vec{z}_i)$$

• \vec{z}_i : feature vector of node *i*



• $s^{*}(i) = \text{Centr.} \text{Adj.} (s^{1}(i), d(i))$

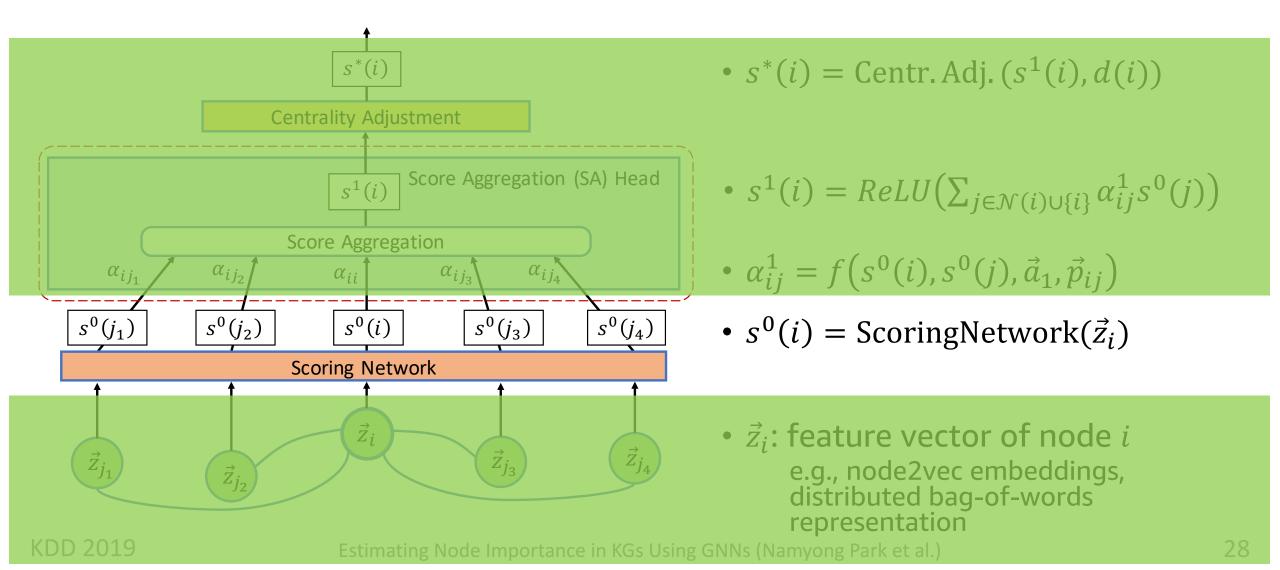
• $s^1(i) = ReLU(\sum_{j \in \mathcal{N}(i) \cup \{i\}} \alpha^1_{ij} s^0(j))$

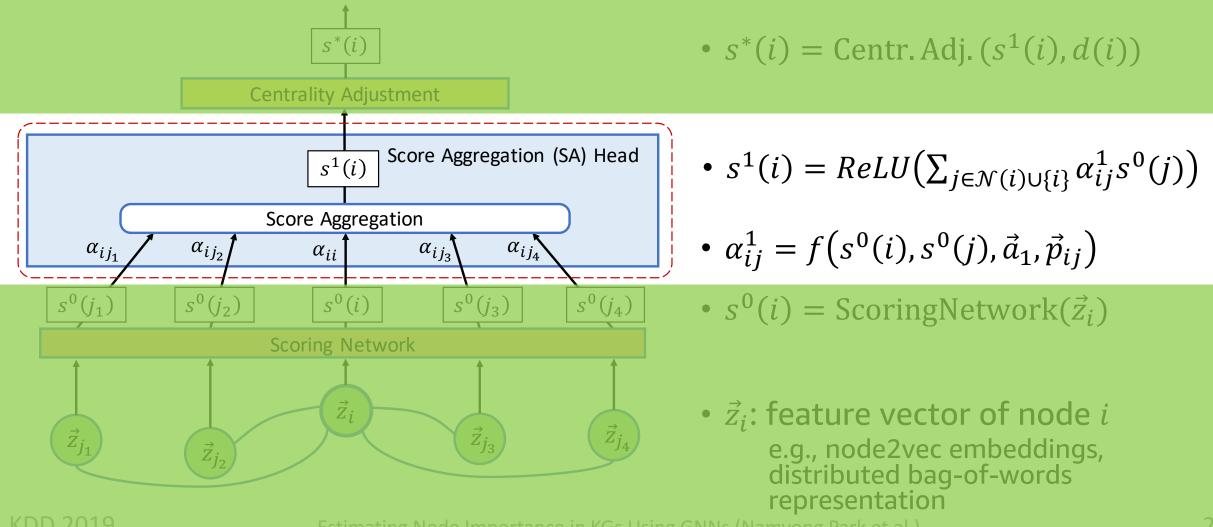
•
$$\alpha_{ij}^1 = f(s^0(i), s^0(j), \vec{a}_1, \vec{p}_{ij})$$

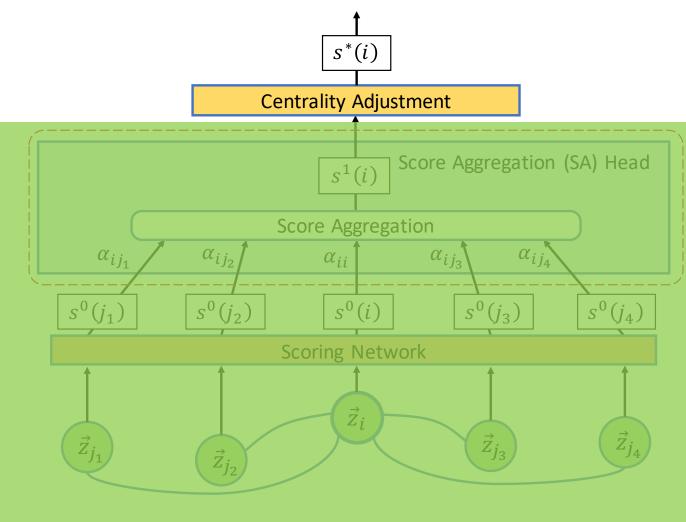
•
$$s^{0}(i) = \text{ScoringNetwork}(\vec{z}_{i})$$

• $\vec{z_i}$: feature vector of node *i* e.g., node2vec embeddings, distributed bag-of-words representation

KDD 2019







• $s^*(i) = \text{Centr.} \text{Adj.} (s^1(i), d(i))$

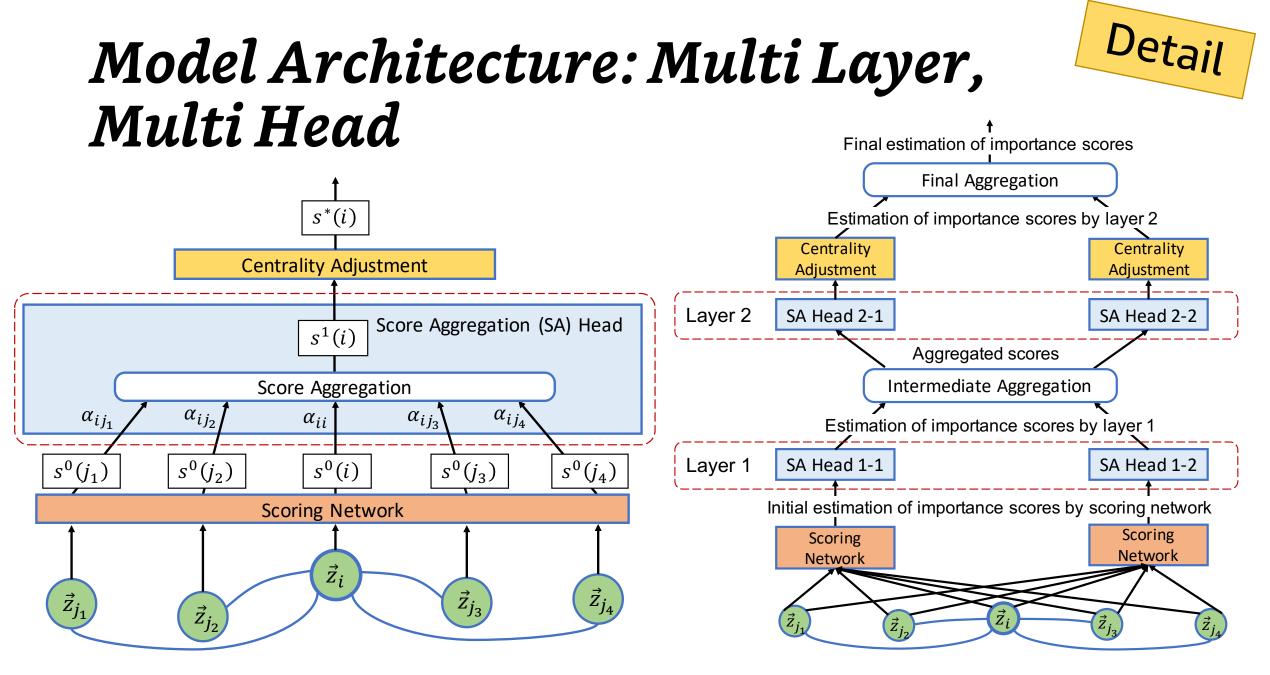
• $s^1(i) = ReLU(\sum_{j \in \mathcal{N}(i) \cup \{i\}} \alpha^1_{ij} s^0(j))$

•
$$\alpha_{ij}^1 = f(s^0(i), s^0(j), \vec{a}_1, \vec{p}_{ij})$$

•
$$s^{0}(i) = \text{ScoringNetwork}(\vec{z}_{i})$$

• \vec{z}_i : feature vector of node *i* e.g., node2vec embeddings, distributed bag-of-words representation

KDD 2019



KDD 2019

Roadmap

- Introduction
- Proposed Method: GENI
- Experimental Results
- Conclusion

Experiments: Baselines

- Non-trainable approaches
 - PageRank (PR)
 - Personalized PageRank (PPR)
 - Hub, Authority, and Relevance score (HAR)
- Supervised approaches
 - Linear regression (LR)
 - Random forests (RF)
 - Neural networks (NN)
 - Graph attention networks (GAT)

Experiments: Datasets

Name	# Nodes	# Edges	# Predicates	Input Score Type	# Nodes w/ Scores
FB15 К	14,951	592,213	1,345	# Pageviews	14,108 (94%)
MUSIC10K	24,830	71,846	10	Song hotttnesss	4,214 (17%)
TMDB5K	123,906	532,058	22	Movie popularity	4,803 (4%)
IMDB	1,567,045	14,067,776	28	# Votes for movies	215,769 (14%)

KDD 2019

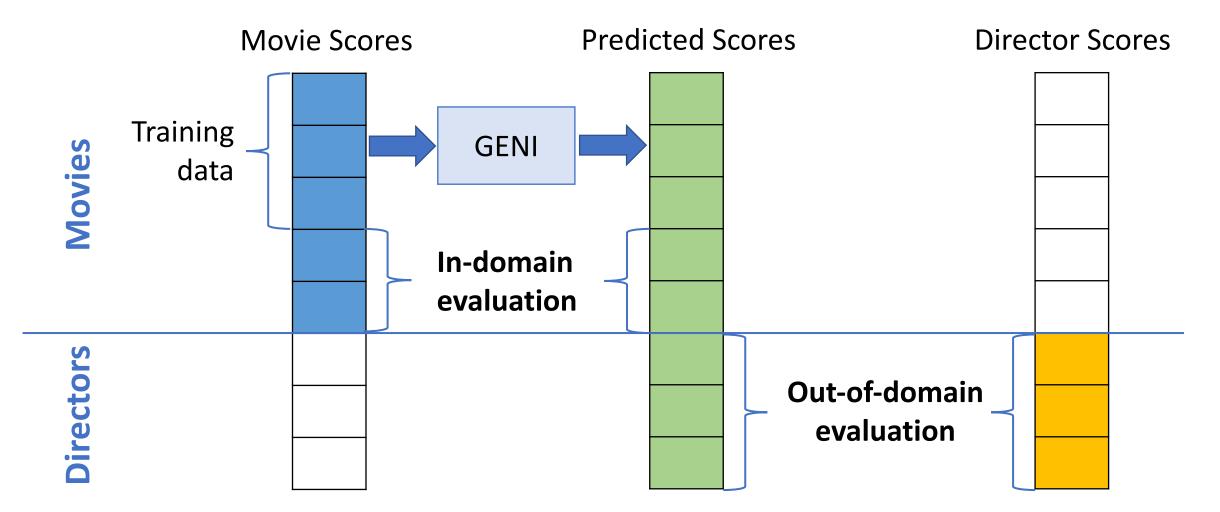
Experiments: Evaluation Strategies

We answer the following questions

[Q1] How well does each method estimate node importance w.r.t. the given input score type? → "In-domain" evaluation

[Q2] How well does the estimation of each method generalize to the node of unseen types?
→ "Out-of-domain" evaluation

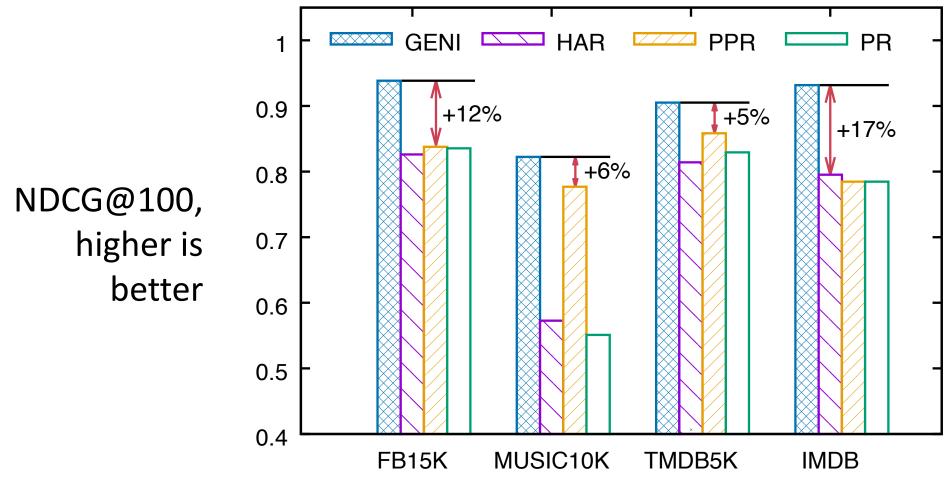
Experiments: Evaluation Strategies



KDD 2019

In-Domain Evaluation

GENI (leftmost) outperforms baselines

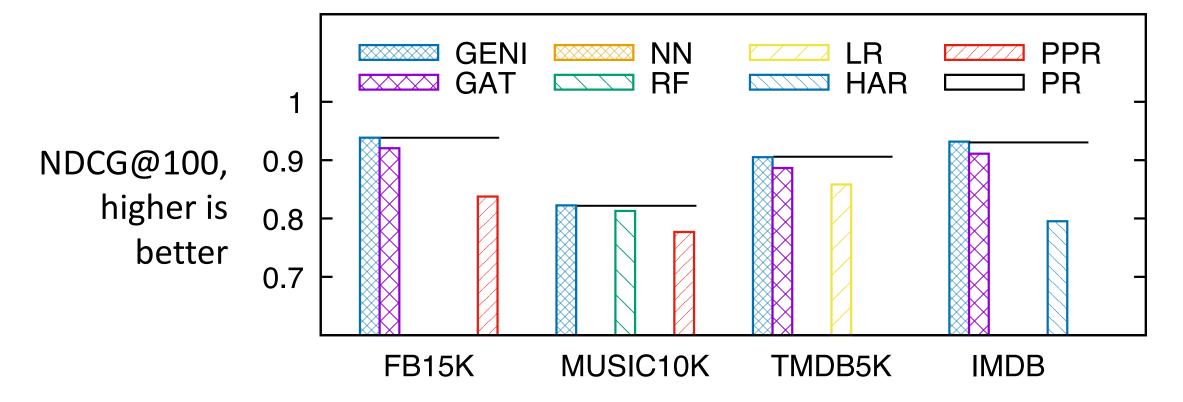


KDD 2019

Estimating Node Importance in KGs Using GNNs (Namyong Park et al.)

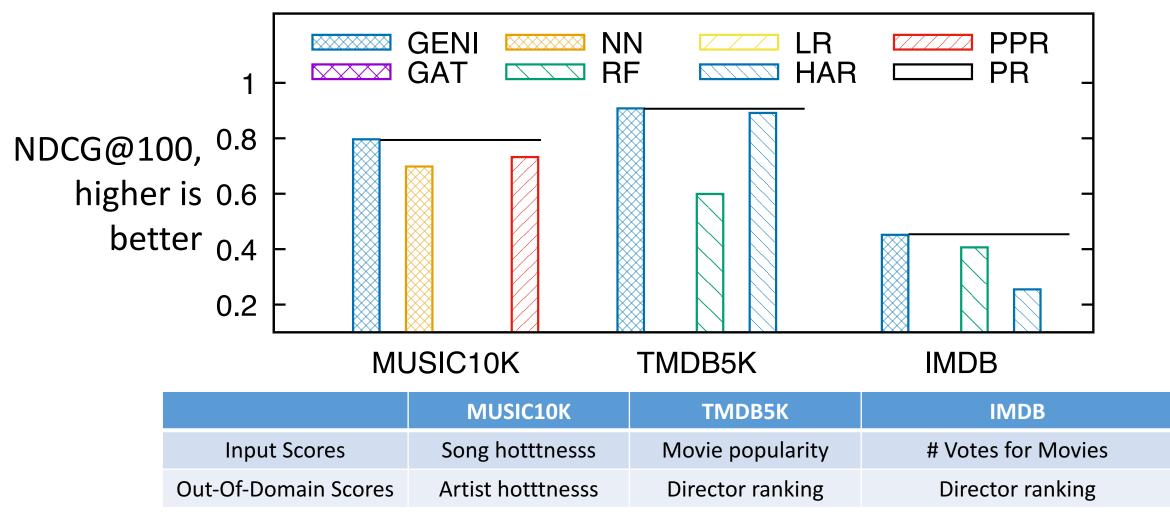
In-Domain Evaluation

GENI (leftmost) outperforms baselines



Out-Of-Domain Evaluation

GENI (leftmost) outperforms baselines



KDD 2019

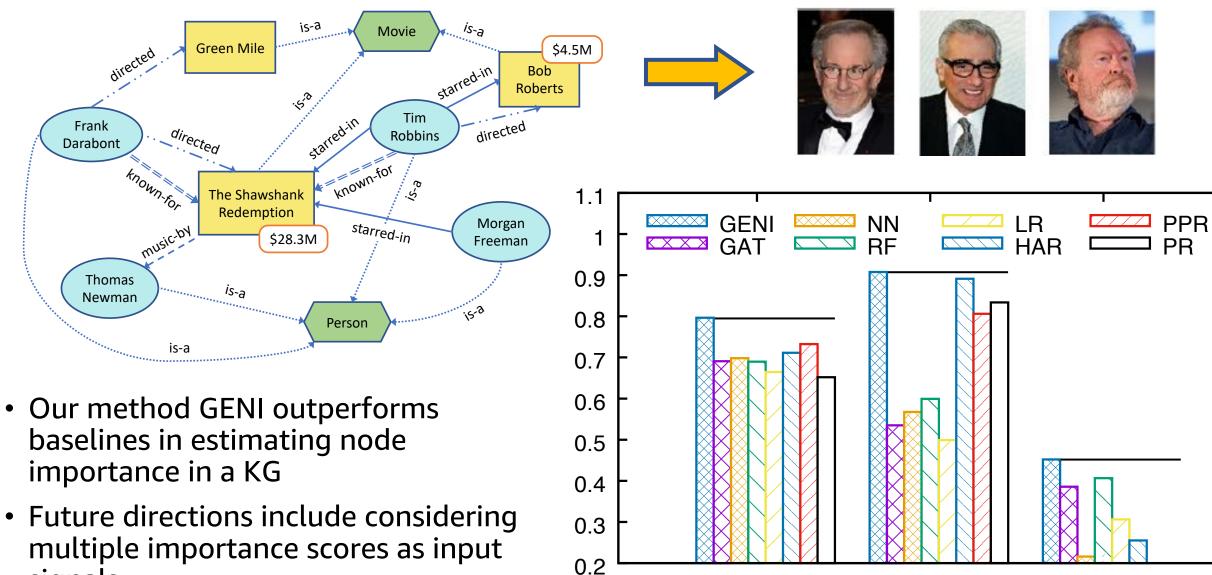
Estimating Node Importance in KGs Using GNNs (Namyong Park et al.)

Roadmap

- Introduction
- Proposed Method: GENI
- Experimental Results
- Conclusion

Conclusion

signals



MUSIC10K

TMDB5K

41

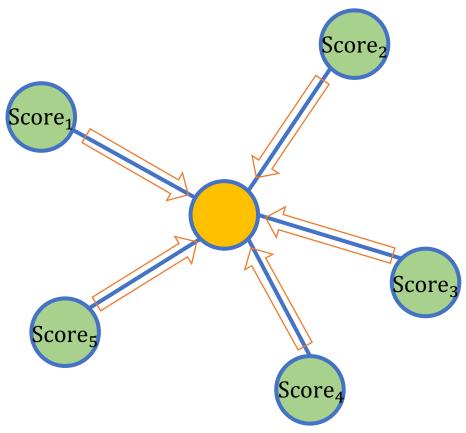
IMDB

Thank you!

Appendix

Idea 1: Score Aggregation

• Initial scores $s^0(\cdot)$ are computed by ScoringNetwork, a feed forward NN trained jointly with the rest of GENI

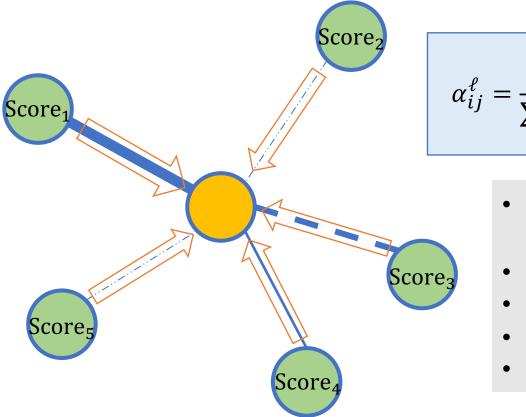


$$s^{0}(i) = \text{ScoringNetwork}(\vec{z}_{i})$$
$$s^{\ell}(i) = \sigma_{s} \left(\sum_{j \in \mathcal{N}(i) \cup \{i\}} \alpha_{ij}^{\ell} s^{\ell-1}(j) \right)$$

- \vec{z}_i : feature vector of node i
- $s^0(i)$: initial score estimation of node i
- $s^{\ell}(i)$: estimated score of node *i*
- $\mathcal{N}(i)$: neighbors of node i
- α_{ij}^{ℓ} : node *i*'s attention on node *j*

Idea 2: Predicate-Aware Attention

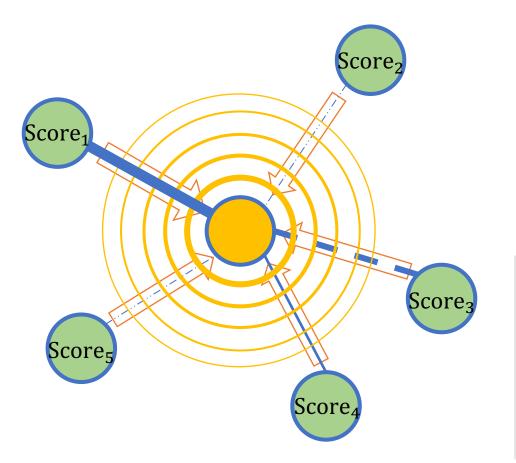
 Model how predicates affect the importance of neighboring entities by using shared self-attention mechanism



$$\frac{\exp(\sigma_{a}(\sum_{m} \vec{a}_{\ell}^{T}[s^{\ell-1}(i)||\phi(p_{ij}^{m})||s^{\ell-1}(j)]))}{\sum_{k \in \mathcal{N}(i) \cup \{i\}} \exp(\sigma_{a}(\sum_{m} \vec{a}_{\ell}^{T}[s^{\ell-1}(i)||\phi(p_{ik}^{m})||s^{\ell-1}(k)})}$$

- α_{ij}^{ℓ} : node *i*'s attention on node *j* computed by the ℓ -th layer
- p_{ik}^{m} : predicate of *m*-th edge between nodes *i* and *j*
- $\phi(\cdot)$: mapping from a predicate to its embedding
- $s^{\ell}(i)$: estimated score of node *i*
- $\mathcal{N}(i)$: neighbors of node i

Idea 3: Centrality Adjustment



$$c(i) = \log(d(i) + \epsilon)$$
$$c^*(i) = \gamma \cdot c(i) + \beta$$
$$s^*(i) = \sigma_s(c^*(i) \cdot s^L(i))$$

- d(i): in-degree of node i
- c(i): initial centrality of node i
- $c^*(i)$: scaled and shifted centrality of node *i*
- s*(i): centrality-adjusted score estimation of node i

Experiments: Evaluation Metrics

- Ranking quality
 - NDCG (Normalized Discounted Cumulative Gain)
 - Spearman correlation coefficient
- Regression quality
 - **RMSE** (Root-Mean-Squared Error)

Experiments: Datasets

Name	# Nodes	# Edges	# Predicates	Input Score Type	# Nodes w/ Scores	Data for OOD Evaluation
FB15 K	14,951	592,213	1,345	# Pageviews	14,108 (94%)	N/A
music10k	24,830	71,846	10	Song hotttnesss	4,214 (17%)	Artist hotttnesss
TMDB5K	123,906	532,058	22	Movie popularity	4,803 (4%)	Director ranking
IMDB	1,567,045	14,067,776	28	# Votes for movies	215,769 (14%)	Director ranking

Experiments: Evaluation Metrics

- Ranking quality
 - NDCG (Normalized Discounted Cumulative Gain)

DCG@k = $\sum_{i=1}^{k} \frac{r_i}{\log_2(i+1)} / \text{NDCG@k} = \frac{\text{DCG@k}}{\text{IDCG@k}}$ where IDCG@k is an ideal DCG at position k

• **Spearman** correlation coefficient

Spearman =
$$\frac{\sum_{i} (g_{r_{i}} - \bar{g}_{r})(s_{r_{i}} - \bar{s}_{r})}{\sqrt{(g_{r_{i}} - \bar{g}_{r})^{2}} \sqrt{(s_{r_{i}} - \bar{s}_{r})^{2}}}$$

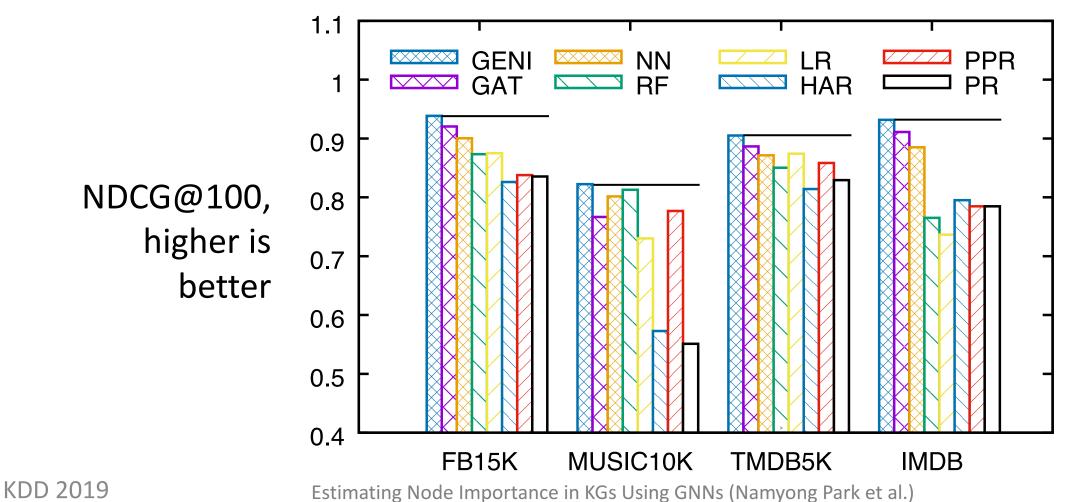
- Regression quality
 - **RMSE** (Root-Mean-Squared Error)

RMSE =
$$\frac{1}{|V_s|} \sum_{i \in V_s} (s(i) - g(i))^2$$

- r_i : graded relevance of node at position i
- \vec{g} , \vec{s} : ground truth scores and predicted scores
- \vec{g}_r , \vec{s}_r : rankings induced from \vec{g} and \vec{s}
- \bar{g}_r, \bar{s}_r : mean of \vec{g}_r and \vec{s}_r
- *s*(*i*): predicted score of node *i*
- g(i): ground truth score of node i
- V_s : a set of nodes with importance scores

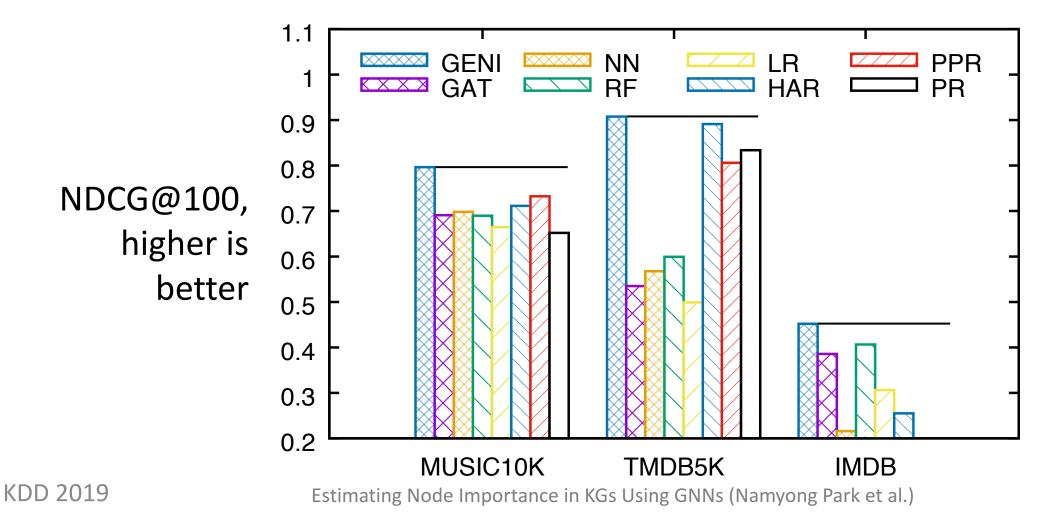
In-Domain Evaluation

GENI (blue) outperforms baselines



Out-Of-Domain Evaluation

GENI (blue) outperforms baselines



Experiments: In-Domain Prediction

Mathad	FB15K		MUSIC10K		TMDB5K		IMDB	
Method	NDCG@100	Spearman	NDCG@100	Spearman	NDCG@100	Spearman	NDCG@100	Spearman
PR	0.8354 ± 0.016	0.3515 ± 0.015	0.5510 ± 0.021	-0.0926 ± 0.034	0.8293 ± 0.026	0.5901 ± 0.011	0.7847 ± 0.048	0.0881 ± 0.004
PPR	0.8377 ± 0.015	0.3667 ± 0.015	0.7768 ± 0.009	0.3524 ± 0.046	0.8584 ± 0.013	0.7385 ± 0.010	0.7847 ± 0.048	0.0881 ± 0.004
HAR	0.8261 ± 0.005	0.2020 ± 0.012	0.5727 ± 0.017	0.0324 ± 0.044	0.8141 ± 0.021	0.4976 ± 0.014	0.7952 ± 0.036	0.1318 ± 0.005
LR	0.8750 ± 0.005	0.4626 ± 0.019	0.7301 ± 0.023	0.3069 ± 0.032	0.8743 ± 0.015	0.6881 ± 0.013	0.7365 ± 0.009	0.5013 ± 0.002
RF	0.8734 ± 0.005	0.5122 ± 0.019	0.8129 ± 0.012	0.4577 ± 0.012	0.8503 ± 0.016	0.5959 ± 0.022	0.7651 ± 0.010	0.4753 ± 0.005
NN	0.9003 ± 0.005	0.6031 ± 0.012	0.8015 ± 0.017	0.4491 ± 0.027	0.8715 ± 0.006	0.7009 ± 0.009	0.8850 ± 0.016	0.5120 ± 0.008
GAT	0.9205 ± 0.009	$\underline{0.7054 \pm 0.013}$	0.7666 ± 0.016	0.4276 ± 0.023	$\underline{0.8865 \pm 0.011}$	0.7180 ± 0.010	$\underline{0.9110\pm0.011}$	0.7060 ± 0.007
GENI	$\left \textbf{ 0.9385 \pm 0.004} \right $	$\textbf{0.7772} \pm \textbf{0.006}$	$\textbf{0.8224} \pm \textbf{0.018}$	$\textbf{0.4783} \pm \textbf{0.009}$	$\textbf{0.9051} \pm \textbf{0.005}$	$\textbf{0.7796} \pm \textbf{0.009}$	0.9318 ± 0.005	$\textbf{0.7387} \pm \textbf{0.002}$

- GENI performs the best for all datasets
- Supervised models mostly outperform non-trainable ones
- Directly utilizing network connectivity further enhances performance

Experiments: Out-Of-Domain Prediction

Mathad	MUSI	с10к	TMD	в5к	IMDB	
Method	NDCG@100	NDCG@2000	NDCG@100	NDCG@2000	NDCG@100	NDCG@2000
PR	0.6520 ± 0.000	0.8779 ± 0.000	0.8337 ± 0.000	0.8079 ± 0.000	0.0000 ± 0.000	0.1599 ± 0.000
PPR	0.7324 ± 0.006	0.9118 ± 0.002	0.8060 ± 0.041	0.7819 ± 0.022	0.0000 ± 0.000	0.1599 ± 0.000
HAR	0.7113 ± 0.004	0.8982 ± 0.001	0.8913 ± 0.010	0.8563 ± 0.007	0.2551 ± 0.019	0.3272 ± 0.005
LR	0.6644 ± 0.006	0.8667 ± 0.001	0.4990 ± 0.013	0.5984 ± 0.002	0.3064 ± 0.007	0.2755 ± 0.003
RF	0.6898 ± 0.022	0.8796 ± 0.003	0.5993 ± 0.040	0.6236 ± 0.005	0.4066 ± 0.145	0.3719 ± 0.040
NN	0.6981 ± 0.017	0.8836 ± 0.005	0.5675 ± 0.023	0.6172 ± 0.009	0.2158 ± 0.035	0.3105 ± 0.019
GAT	0.6909 ± 0.009	0.8834 ± 0.003	0.5349 ± 0.016	0.5999 ± 0.007	0.3858 ± 0.065	0.4209 ± 0.016
GENI	$\textbf{0.7964} \pm \textbf{0.007}$	$\textbf{0.9121} \pm \textbf{0.002}$	$\textbf{0.9078} \pm \textbf{0.004}$	$\textbf{0.8776} \pm \textbf{0.002}$	$\textbf{0.4519} \pm \textbf{0.051}$	$\textbf{0.4962} \pm \textbf{0.025}$

- Prediction is done for entities of some type \mathcal{T} , which is not used for training.
- GENI achieves the best results for all KGs
- Non-trainable methods achieves better results on MUSIC10K and TMDB5K

KDD 2019

Experiments: Case Study

Top-10 movies (In-domain estimation)

	GENI	HAR	GAT			
1	The Dark Knight Rises	11	Jason Bourne	63	The Dark Knight Rises	11
2	The Lego Movie	70	The Wolf of Wall Street	21	Clash of the Titans	103
3	Spectre	10	Rock of Ages	278	Ant-Man	4
4	Les Misérables	94	Les Misérables	94	The Lego Movie	68
5	The Amazing Spider-Man	22	The Dark Knight Rises	7	Jack the Giant Slayer	126
6	Toy Story 2	39	V for Vendetta	27	Spectre	7
7	V for Vendetta	26	Now You See Me 2	81	The Wolf of Wall Street	16
8	Clash of the Titans	97	Spectre	5	The 5th Wave	67
9	Ant-Man	-2	Austin Powers in Goldmember	140	The Hunger Games: Mockingjay - Part 2	-4
10	Iron Man 2	29	Alexander	141	X-Men: First Class	767

Top-10 directors (Out-of-domain estimation)

	GENI		HAR		GAT	
1	Steven Spielberg	0	Steven Spielberg	0	Noam Murro	N/A
2	Tim Burton	9	Martin Scorsese	44	J Blakeson	N/A
3	Ridley Scott	6	Ridley Scott	6	Pitof	N/A
4	Martin Scorsese	42	Clint Eastwood	19	Paul Tibbitt	N/A
5	Francis Ford Coppola	158	Woody Allen	112	Rupert Sanders	N/A
6	Peter Jackson	-4	Robert Zemeckis	1	Alan Taylor	145
7	Robert Rodriguez	127	Tim Burton	4	Peter Landesman	N/A
8	Gore Verbinski	8	David Fincher	40	Hideo Nakata	N/A
9	Joel Schumacher	63	Oliver Stone	105	Drew Goddard	N/A
10	Robert Zemeckis	-3	Ron Howard	-2	Tim Miller	N/A

- The top-10 movies predicted by GENI is qualitatively better than others
- The top-10 directors by GENI and HAR are similar in quality, having five common directors
- GAT's estimation on directors is much worse than the two others

Experiments: In-Domain Regression

RMSE of In-Domain Prediction for Supervised Methods

Method	FB15 K	MUSIC10K	tmdb5k	IMDB
LR	1.3536 ± 0.017	0.1599 ± 0.002	0.8431 ± 0.028	1.7534 ± 0.005
RF	1.2999 ± 0.024	0.1494 ± 0.002	0.9223 ± 0.015	1.8181 ± 0.011
NN	1.2463 ± 0.015	0.1622 ± 0.009	0.8496 ± 0.012	2.0279 ± 0.033
GAT	1.0798 ± 0.031	0.1635 ± 0.007	0.8020 ± 0.010	1.2972 ± 0.018
GENI	$\textbf{0.9471} \pm \textbf{0.017}$	0.1491 ± 0.002	$\textbf{0.7150} \pm \textbf{0.003}$	$\textbf{1.2079} \pm \textbf{0.011}$

- GENI performs better than other supervised baselines
- Overall, the regression performance of supervised methods follows a similar trend to their performance in terms of ranking measures

Experiments: Flexibility for Centrality Adjustment

Method	FB	15к	TMDB5K		
Method	NDCG@100	Spearman	NDCG@100	Spearman	
PR	0.835 ± 0.02	0.352 ± 0.02	0.829 ± 0.03	0.590 ± 0.01	
Log In-Degree	0.810 ± 0.02	0.300 ± 0.03	0.852 ± 0.02	0.685 ± 0.02	
GENI-Fixed CA	0.868 ± 0.01	0.613 ± 0.01	0.899 ± 0.01	0.771 ± 0.01	
GENI-Flexible CA	$\textbf{0.938} \pm \textbf{0.00}$	$\boldsymbol{0.777 \pm 0.01}$	$\boldsymbol{0.905 \pm 0.01}$	$\boldsymbol{0.780 \pm 0.01}$	

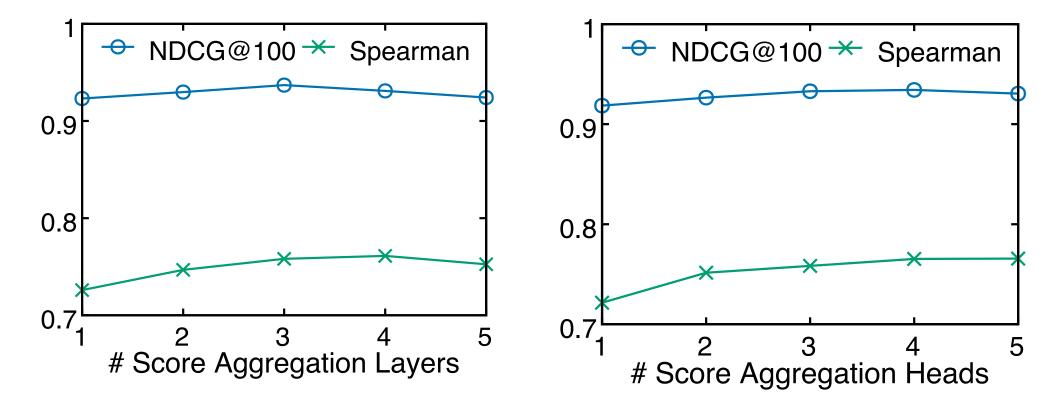
- GENI with fixed CA estimates $s^*(i) = \sigma_s(c(i) \cdot s^L(i))$
- When node centrality correlates well with input scores, fixed CA works well
- When node centrality does not agree with input scores, flexible CA performs much better than fixed CA

Experiments: Effect of Considering Predicates

Metric	Shared Embedding	Distinct Embedding	
NDCG@100	0.9062 ± 0.008	$\textbf{0.9385} \pm \textbf{0.004}$	
Spearman	0.6894 ± 0.007	0.7772 ± 0.006	

- Using "shared embedding" forces GENI to lose the ability to distinguish between different predicates
- Results show that GENI makes an effective use of predicates for modeling the relation between node importance

Experiments: Parameter Sensitivity

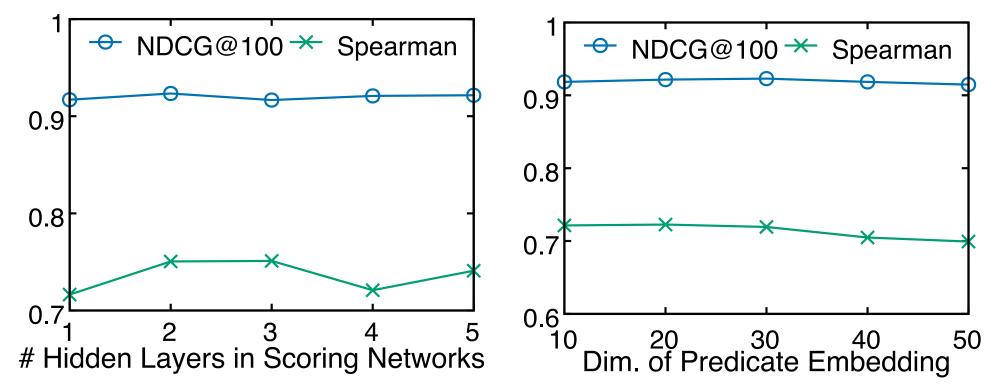


 Model performance improves as we use a greater number of SA layers and SA heads

KDD 2019

Estimating Node Importance in KGs Using GNNs (Namyong Park et al.)

Experiments: Parameter Sensitivity



- Model performance tends to improve as we use a greater number of hidden layers in scoring networks
- Increasing the dimension of predicate embedding beyond an appropriate value negatively affects model performance

KDD 2019

Estimating Node Importance in KGs Using GNNs (Namyong Park et al.)

Detail