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ABSTRACT

Given a million-scale dataset of who-calls-whom data containing

imperfect labels, how can we detect existing and new fraud patterns?

We propose CallMine, with carefully designed features and visu-
alizations. Our CallMine method has the following properties: (a)
Scalable, being linear on the input size, handling about 35 million
records in around one hour on a stock laptop; (b) Effective, allowing
natural interaction with human analysts; (c) Flexible, being appli-
cable in both supervised and unsupervised settings; (d) Automatic,
requiring no user-defined parameters.

In the real world, in a multi-million-scale dataset, CallMine was
able to detect fraudsters 7,000× faster, namely in a matter of hours,
while expert humans took over 10 months to detect them.

CIKM-ARP Categories: Application; Analytics and machine learn-

ing; Data presentation.
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1 INTRODUCTION

Given millions or billions of who-calls-whom data, how can we spot

abusive or fraudulent calls? How can we help analysts explain the

anomalies and visualize the results on such time-evolving graphs?

Phone calls are a ubiquitous method of communication. However,
they are often used for fraudulent purposes and monetary gain.
Our goal is to help analysts sift through millions of phone calls to
spot either known types of fraud (labeled/supervised case), or even
new, unknown types of fraud (unlabeled/unsupervised case); to
spot outliers and micro-clusters (organized behavior); to visualize
the results; and to justify suspicion (explainability), as companies
need to justify blocking a phone number or marking it as spam.

1.1 Problem Definition

According to CFCA [6], more than 28% of the telecom operators re-
port a False Positive Rate (FPR) of 90% in fraud detection. Such high
FPR imply a high effort from the fraud analysts in meaningless in-
vestigations, delaying the response to the true fraud, which leads to
higher financial fraud impacts. The majority of fraud management
systems are rule-based, which means that they only detect known
fraud. It is critical for any fraud system to have the capability to
detect unknown fraud. Therefore, our research problem is:

Problem 1 (Anomaly detection and visualization).
• Given

– Who calls whom, when, and for how long

– Fraud/non-fraud labels for some of the nodes (optional)

• Find

– Fraudsters similar to the ones already labeled

– New types of fraudsters

– Explanations of fraud/non-fraud labels

– Visualization and interaction

1.2 CallMine Discoveries

Figure 1 illustrates some of CallMine’s discoveries, described next.
Sudden cut-off. Figure 1(i.a) plots the PDF (probability density func-
tion) of phone call duration, exhibiting a sudden cut-off at 30 min
exactly. We refer to this as ‘sudden cutoff’ and we elaborate in
Observation 1 in Section 5.

https://doi.org/10.1145/3583780.3614662
https://doi.org/10.1145/3583780.3614662
https://doi.org/10.1145/3583780.3614662
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i.a. Call duration has a spike i.b. Confirmed fraudsters (in black) ii.a. Valuable leads: ghost-chasers and -destinations

Figure 1: CallMine works for the supervised (i.a-b) and unsupervised settings (ii.a). i.a: 1-d histogram of duration - fraudsters

tend to do long phone calls. i.b: 2-d heat-map of in- vs out-degree - confirmed fraudsters either have zero in-degree (‘volcanoes’,

black triangles) or zero out-degree (‘black holes’, in black squares). ii.a unsupervised case: CallMine discovers two suspicious

groups forming a near-bipartite core (ii.a): ghost-chasers (purple box) and ghost-destinations (red box). See text for more details.

No reciprocity. Figure 1(i.b) shows a scatter-plot of customers, with
in-degree versus out-degree (in ‘triple-log’ scales: even the colormap
is in log-scale). A huge number of customers are either ‘volcanoes’
(high out-degree; near-zero in-degree) or ‘black holes’ (the reverse);
black indicates confirmed (labeled) fraudsters (square for black
holes and triangles for volcanoes). Also, notice the abnormally low
count of points along the diagonal, which would imply reciprocity.
This is expected in phone call networks, but is missing here.
Useful leads. Figure 1(ii.a.) shows how CallMine provided use-
ful leads, marked with a purple box (and referred to as ‘ghost-

chasers’ in the figure). The plot is similar to Figure 1(i.b), with two
differences: (1) the labeled nodes are not shown, and (2) instead,
we show two groups of nodes that CallMine deemed suspicious:
the ‘ghost-destinations’, which are non-functioning phone numbers
(hence we name them ‘ghosts’); and the ‘ghost-chasers’. Interest-
ingly, CallMine found out all the ‘ghost-chasers’ are calling most of
the ‘ghost-destinations’; even more interestingly, none of the ‘ghost-
chasers’ is labeled as ‘fraud’, while their behavior is clearly not nor-
mal, and very similar to confirmed fraudsters (volcanoes of lower de-
gree, depicted as black triangles in Figure 1(i.b)). Section 5 describes
in more detail how CallMine helped to spot these two groups.

1.3 Properties

CallMine exhibits the following properties:
– Scalable. We designed CallMine to scale linearly with the data-
base size for feature extraction; therefore we exclude triangle com-
putation and shortest paths.
– Effective. CallMine incorporates domain knowledge about hu-
man behavior, common graphical patterns, and call-graphs specifi-
cally. It is designed to be intuitive so that non-technical analysts
can effectively use it.

• Interactive, it allows drill-down and deep dives for suspicious
nodes and large-scale analysis (7M nodes; 35M edges).

• Flexible, it handles both labeled and unlabeled datasets.
• Automatic, it does not require parameter tuning.
• Explainable, it provides meaningful visualizations.

–NovelDiscoveries.CallMine led to novel discoveries in the data–
such as the ‘sudden cutoff’ of Figure 1(i.a), the ‘ghost-destinations’

and ‘ghost-chasers’ of Figure 1(ii.a), as explained in useful leads
before. See Section 5, Observations 1-5.
– Reproducible: Our code is open-sourced at https://github.com/
mtcazzolato/callmine, along with synthetic datasets.

To the best of our knowledge, CallMine is the first method
for fraud detection in call-graphs containing the aforementioned
properties, combined. CallMine work with source, destination,
duration, and timestamp, without further information. This paper
describes novel types of fraud that are not commonly studied in
academic literature. We provide the feature design and integration
to the domain knowledge to correctly spot fraudulent behavior.

1.4 CallMine in the real world

CallMine was able to detect suspicious behavior within hours,
which human analysts declared as confirmed fraud 10 months later,
when fraud victims started to complain to their provider. Figure 2
shows that this is about 7,000 times faster. If CallMine was in pro-
duction, it would have blocked about 2,000 nodes, which collectively
made approximately 100K phone calls per day, for 10 consecutive
months, for a total of about 10M fraudulent phone calls.

CallMine operates in both supervised, as well as unsupervised
modes. The latter is extremely valuable because CallMine can spot
new, unknown types of fraud. Thanks to its ability to spot anomalies
CallMine can detect unknown fraud; thanks to its interactivity, it
accelerates the investigations, up to 7,000 times faster, as mentioned
above; it provides explanations via visualizations for its decisions.

Figure 2: CallMine outperforms human analysts and spots
abnormal behavior among millions of subscribers.

https://github.com/mtcazzolato/callmine
https://github.com/mtcazzolato/callmine
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1.5 Suitability for CIKM-ARP track

–Deployment:CallMine is currently in a 3-month trial run, which
started in May 2023, is part of a research lab, and it will be running
on 5G edge node data, processing tens of millions of phone calls
per day for a mobile operator.
– Applications: we model millions of phone calls daily with legiti-
mate subscribers and individuals engaged in fraudulent activities.
– Analytics and machine learning: we extract meaningful fea-
tures from phone calls, and spot fraudsters both visually and au-
tomatically. We also recommend the most-incriminating plots to
improve the understanding and interpretability of outliers.
– Data presentation:we summarize the obtained patterns through
intuitive visualizations focused on anomaly detection for large-scale
call graphs. The proposed visual tools also allow users to interact
with obtained patterns, and do deep-dives into nodes and ego-nets.

2 RELATED WORK

Table 1 contrasts our method CallMine against the state-of-the-art
competitors: only CallMine satisfies all the specifications.

Table 1: Only CallMine matches all specifications. ‘?’ means
‘unclear’ or ‘it depends on the specific method/implementation’.
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Scalable ? " " ? "

Effective ? " " "

Automatic ? ? ? "

Supervised setting " " "

Unsupervised setting " ? "

Explainable " " ? "

Visualization " "

Interactive " "

Unsupervised - Anomaly detection.Given a cloud of n-dimensional
points, anomaly detection algorithms include Isolation Forest [26]
and Gen2Out [24]. For anomaly detection in graphs, see the sur-
vey of Akoglu et al. [2]. Dense subgraphs are usually suspicious,
indicating lockstep behavior. Algorithms to spot such cases include
FRAUDAR [17] and CoreScope [30]. The LookOutmethod [14] finds
the best 𝑘 scatter-plots that justify the discovered outliers.

Unsupervised - Clustering methods. Approaches such as k-means,
G-means [15], DBSCAN [9], and OPTICS [3] try to group nearby
points together, indicating themain groups and trends in the dataset.

(Semi-)supervised methods. In this setting, we have labels of some
of the nodes. Typical methods here include belief propagation [34],
semi-supervised learning by Zhu et al. [36], and variations (eg.,
ZooBP [10]). The recent, graph neural networks (GNNs) provide
non-linear solutions (e.g., GCN [22], GraphSage [16], and SGC [32]).

Time-evolving graphs. Recent methods try to learn time-evolving
graph representations [21], by combining GNNs with RNNs [23,

28], or by using time-aware graph attention mechanisms [33].
Other representation-learning methods include temporal random
walks [27], deep autoencoders [13], and enforcing temporal smooth-
ness on node embeddings [35].

Graph visualization. Graph visualization techniques include Ma-
trix, Circle, and Pivot Plots, and the Fruchterman-Reingold graph
layout algorithm, and graph visualization systems include GLO
[31], Apolo [4], Perseus-Hub [20], FACETS [29], and others [18, 25].
For high-dimensional spaces, the parallel coordinate method is
suitable [19].

Call-graph networks. The TLAC method [8], showed the preva-
lence of log-logistic distributions, and a spike at the 1h of phone
call duration (see Figure 8 there; and Observation 1 in this paper).
Akoglu et al. [1] reported reciprocal behavior in a large network
(i.e., in-degree is comparable to the out-degree). Analysis of social
network behavior is also related: Costa et al. [7] reported that the
inter-arrival time (IAT) of human-generated events follows a bi-
modal distribution with spikes at a few minutes and hours, with
daily periodicity. On the contrary, bots often have regular IAT, say,
every 10 seconds - and thus they have very low variance [11] [12].
Here, we use all of these observations to extract suitable features.

3 PROBLEM DEFINITION - ‘KNOW THY

ENEMY’

The most crucial step is feature extraction: which characteristics

of customer behavior are indicative of abnormality and fraud? Let’s
see what domain experts know. First, we give some facts about
phone call datasets and terminology; then we describe some known
fraudulent behaviors and list the features that help us detect them.

Volume and ‘power-laws’. Phone call datasets have millions
of nodes (customers/subscribers) and hundreds of millions of new
edges each day; degree distributions are heavy-tailed (power-law),
with most customers having very few phone calls, while a tiny mi-
nority of customers make many calls every day. Extreme behavior
(like a high volume of international calls, huge in- or out-degrees,
etc.), is often, but not always, an indication of fraud: for exam-
ple, many in- and out-going calls could be from a large institution
with a ‘Private Bank Exchange’ (PBX). Thus, we have to consider
combinations of multiple, carefully designed features.

Adversarial nature and ‘camouflage’. Fraudsters try to cam-
ouflage themselves with multiple techniques, such as Human Be-
havior Simulation (HBS) or statistical and profiling methods. Thus,
more than 42% of operators report a FPR higher than 90% [5].

Multiple types of fraudulent behavior. There is a large, and
growing, number of types of fraud: [6] gives a list of the most well
known of them; we summarize them in Table 2, where we also list
the features (in-/out-degree, etc.) that could help us detect them.

‘Fraud Types’ and ‘Fraud Methods’. Following the literature,
we introduce the two concepts.

Fraud Type is the way that a fraudulent actor monetizes. For
example, by sending calls to a premium number that he/she owns,
the fraudster will charge the victims a high price.

Fraud Method is an enabling technology: For example, by per-
forming a ‘Wangiri’ (One Ring) attack, using a premium number
that he owns, the fraudster will call multiple different subscribers
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and hang up before allowing the receiver to answer. Those receivers
that call back, will be forced to pay a premium call fee.

Table 2: Indicator signs for some of the fraudulent behaviors.
+(/-) means abnormally high(/low).
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Fraud Type

Revenue Share (IRSF) + – – + +

Arbitrage + – – + + – +

Voice Interconnect Bypass + – – + – +

Fraud Method

CLI Spoofing + + –

Wangiri + + +

Robocalling + – + +

3.1 Fraud Types – Modus Operandi (M.O.)

Below, we list some of the most prevalent fraud types, describing
the features needed to detect each type.

International Revenue Share Fraud (IRSF). Fraudsters often
gain access to an operator’s network and direct many calls into
high-cost ‘revenue share’ service numbers. Fraudsters achieve that
through multiple fraud methods, like Wangiri (see below), PBX
Hacking, etc.
Indicator Signs: High out-degree; near-zero in-degree.

Arbitrage (MTR). A shady telecommunications company routes
international long-distance calls through a third country to achieve
lower settlement rates.
Indicator Signs: Huge out-degree; small in-degree; small inter-arrival
times (IAT) (to handle the volume).

Voice Interconnect Bypass (VOIP/SIMbox). Specifically for the
SIMbox scenario, fraudsters partner with international entities that
route international calls through local subscriber identity module
(SIM) cards installed in SIMboxes, avoiding international termina-
tion fees and paying a much cheaper local termination cost.
Indicator Signs: Similar to ‘arbitrage’ (high out-degree; small IAT).
Low in-degree, but often above zero (attempting camouflage).

3.2 Fraud Method – Enabling Technique

Caller ID Spoofing. Fraudsters will often change their numbers
to something with a similar area code so that the receiver is more
likely to pick up the phone call.
Indicator Signs: Similar to Arbitrage and Voice Bypass.

‘Wangiri’ . This is call-back scam. Fraudsters call victims and
immediately hang up; some of the victims call back, their call is
re-routed to a premium number that the fraudsters own; this will
incur a premium fee for the victims and their Telecom Operator.
Indicator Signs: High out-degree; zero call duration; regular IAT.

Robocalling. Such calls play a pre-recorded message.
Indicator Signs: High out-degree; no in-degree; too regular inter-
arrival times. Short/zero duration of calls.

4 CALLMINE: THE PROPOSED METHOD

Here, we present CallMine and detail our design decisions. The
main challenges are (a) the volume of data and (b) the adversarial
nature of fraudulent actors (‘camouflage’). CallMine addresses
these issues by (a) designing scalable algorithms and visualizations
with care, and (b) summarizing data without rigid thresholds to
allow analysts to identify evolving/emerging types of fraud.

4.1 Features

We use node-level features: if a given node is a fraudster, we want
to capture its behavior, and spot patterns and deviations from the
behavior of a non-fraudulent subscriber. Our proposed features are
in two groups: the static case, without timestamps and aggregating
all the phone calls of a subscriber throughout the whole duration of
observation, and the dynamic case, with the temporal information.

4.1.1 Static Case. There are countless features we can extract for
each node (PageRank, radius, several betweenness measures, etc).
We aimed for a small set of node-level features, that are fast to
compute, and are known to be related to fraudulent activity (either
from Section 3, Table 2) or from earlier works on the lockstep
behavior of fraudsters, log-logistic behavior of typical users, etc.

Thus, we propose the following features:
• in-degree, out-degree, in-weighted-degree, out-weighted-degree,
in-call-count, out-call-count to spot high/low activity, lack of
reciprocity,

• core-number to spot lockstep behavior, that is, groups of
people having the same contacts.

The core number of a node is 𝑘 , if the node belongs to the 𝑘-core,
but not the 𝑘 + 1-core of the graph. High core value for a node
means that the node is well connected (e.g., part of a near-clique or
a near-bipartite core).

4.1.2 Dynamic/time-evolving case. Inter-arrival times (‘IAT’) of
events often reveal fraudsters: for example, telemarketers will call
a new number every few minutes, with small variance.

No averages or standard deviation. Both measures suffer from
subtle issues: the average is effectively the 1/(out-call-count), car-
rying no extra information; the standard deviation is huge and
thus also uninformative, since we usually have heavy-tailed dis-
tributions (like power-laws, Pareto, or log-logistic). Therefore, we
exclude both features from our analysis intentionally.

Instead, we propose robust features: median rather than the
mean, and MAD (Median Absolute Deviation) and inter-quantile
range (IQR) instead of standard deviation.MAD is defined asmedian
( |𝑥𝑖 −𝑥 |), and IQR is defined as 𝐼𝑄𝑅 = 𝑄3−𝑄1, where𝑄3 is the 3rd
quarter (75th) percentile and𝑄1 is the first quarter (25th) percentile.

The list of dynamic features for every node is the following:
• for Inter-Arrival Time (IAT): median-IAT, IQR-IAT,
• for call duration: for incoming phone calls in-median-duration,
in-IQR-duration, and similarly for out-going phone calls: out-
median-duration, out-IQR-duration.
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4.2 Visualizations

The second main design goal is to make our system effective by
optimizing for explainability and interactivity. We propose to use
visualization. For explainability, we use 1-d histograms, 2-d scatter
plots (scatter-matrices, as in Figure 4), and parallel coordinates. For
interactivity, we enable three main interactions: (i) Label Hovering;
(ii) Labeled Node Highlighting; and (iii) Brushing and Linking.

In order to further help analysts examine a suspicious-looking
node or set of nodes, we provide the spring-model of the ego-net
(if it is small), or the spy-plot of the adjacency matrix, if it is large,
after careful reordering of rows and columns, as in Figure 4(ii.b).

4.3 Algorithm

Algorithm 1 shows the pseudocode of CallMine, with: feature
extraction (line 1-3); attention routing (line 4, 10-14); and interaction
(line 7-9). See Figure 3 with our findings.

Algorithm 1: CallMine: outline
Data: log of phone calls, and labels for ‘fraudsters’ (optional)
Result: fraudsters and outliers in 𝐺 , and top-plots

1 Build a time-evolving graph 𝐺 ;
2 Extract static features: core number, in/out-degree,

in/out-weighted degree, and in/out-call count;
3 Extract temporal features: in/out-median-IAT, in/out-IQR-IAT,

in/out-median-duration, and in/out-IQR-duration;
4 Get anomalies and top-plots: CallMine-Focus(n, d, b);
5 if labels then codify node colors;
6 Generate visualizations (see Sec 4.2): 1-d histograms, 2-d

contour plots, interactive 2-d pair-plots, and n-d parallel
coordinates;

7 if user selected points with lasso then

8 Generate ego-net and plot corresponding features;
9 end

10 Function CallMine-Focus(n, d, b):
/* 𝑛 is the number of anomalies; 𝑏 is the budget (number of

plots to show); 𝑑 is the dimensionality of plots (𝑑 = 2
for scatter-plots, 𝑑 > 2 for parallel coordinates) */

11 Detect 𝑛 anomalies/micro-clusters;
12 Get the anomaly score (Isolation Forest) for every

𝑑−dimensional feature combination;
13 Rank feature combinations according to scores;
14 return top-𝑏 𝑑-dimensional feature combinations

4.4 Complexity Analysis

Lemma 4.1. The time complexity of CallMine is 𝑂 ( |𝐸 |), that is,
linear on the number of edges 𝐸.

Proof. Omitted for brevity. ■

5 EXPERIMENTS

Here we aim to answer the following questions: Q1. How scalable

is CallMine? Q2. How effective is CallMine on real data?
The anonymized phone-call graphs we used in our experiments

(a) 1st most incriminating 2-d plot (b) 2nd most incriminating 2-d plot

(c) n-d plot with the most incriminating parallel coordinates

Figure 3: CallMine-Focus shows most-incriminating plots

and anomalies. See in (a-b) circles in red indicating nodes

most incriminated by the plots, and circles in blue indicating

other outliers detected by CallMine-Focus. In (c), red lines

highlight detected outliers in the ‘parallel coordinates’.

are described in Table 3. They are quadruplets of the form (caller,
callee, timestamp, duration). Each row of the datasets is a call.

Table 3: Specifications of our datasets.

Dataset #calls #nodes #edges #known fraudsters

ds-large 17.6M 515.6k 3.4M 21.7k
ds-huge 34.3M 7.5M 10.6M 8.5k

5.1 Q1 - Scalable

Figure 5 shows the execution time for ds-large and ds-huge and
some of their subsets. It takes about 1 hour for about 35 million

phone calls, on a stock laptop (M1 MacBook Air, 16GB RAM).

5.2 Q2 - Effective

CallMine processed real data and noticed the following traits.

Observation 1 (‘sudden cutoff’). There is an unusual cut-off

at thirty minutes for many phone calls.

Figure 1(i.a) is the PDF of phone call duration (lin-log scales), with
labels (light brown for fraud; orange for normal). Calls are made
from different source numbers to different destination numbers.

Red flags: very similar duration, exactly at 30 minutes; high frac-
tion (≈50%) of confirmed fraudsters.

Observation 2 (‘bi-lockstep’). (bipartite-lockstep) Some cus-

tomers form ’bi-partite’ cores, with several ‘volcanoes’ (high out-

degree, near-zero in-degree), connected to the same ‘black holes’ (the

reverse).
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i.a. Lasso selection highlighting nodes in scatter-plots

i.b. High core number i.c. Micro-cluster and outliers

ii.a. Adj. matrix of nodes ii.b. ‘ghost-destinations’

Figure 4: CallMine spots suspicious behavior with useful

tools. i.a: ‘Lasso’ selection highlights nodes in all scatter-

plots. Selected nodes are suspicious: i.b. they have high core

numbers and ii.c. form a micro-cluster. These nodes are the

same as the ‘ghost-chasers’ and ‘ghost-destinations’ of the

Introduction. The ego-net (ii.a) of selected nodes confirms

that. The two groups form a near-bipartite core with ‘ghost-

chasers’ and ‘ghost-destinations’. ii.b. Despite their efforts to

blend in, CallMine finds them.

Figure 5: CallMine scales near-linearly on the dataset size.

CallMine helped us spot the suspicious nodes in Figure 4(i.a.):
We interactively selected the suspicious nodes and observed their
feature behavior. This group is the same one as the purple group
in Figure 4(i.b), and they managed to camouflage their behavior by
deliberately increasing the volume of calls to free numbers, service
numbers, and non-existent numbers (‘ghosts’), which are ‘black
holes’ with zero out-degree. By matching the known black hole

micro-clusters used by fraudsters to camouflage their behavior
(Figure 4(i.c, ii.a)), CallMine identified other potential fraudsters
in the network, both with high core number (Figure 4(i.b)) and
dense adjacency matrix (Figure 4(ii.b)).

Red flags: high density; high core number; zero out-degree; and
non-functioning destination.

Observation 3 (‘ghost-destinations’). A micro-cluster of

about 900 nodes (Figure 4(i.c)), that only has inbound calls from

several different numbers, with close to 1 second each.

Red flags: This group’s characteristics are consistent with other
black hole micro-clusters that were used by confirmed fraudsters
to camouflage high call volumes and out-degree.

Observation 4 (‘ghost-chasers’). The sources from Observa-

tions 2-3 are very similar to confirmed fraudsters (see Figure 1(i.b)),

and they all mostly call the ‘ghost-destinations’ of Observation 3.

Observation 5 (‘heavy-hitters’). We used ‘lasso’ functional-

ity of CallMine on Figure 4(i.a), and thus we spotted high-activity

nodes. CallMine discovers suspicious outliers (orange, 4 i.c), as well

as two very suspicious groups forming a near-bipartite core (ii.a).

Red flags: All of them had high density (core-number), and the
selected set contained both confirmed fraudsters (in red) as well
as others (either ‘honest’, or not-yet-detected fraudsters). Closer
inspection by a domain expert revealed that even though many of
them interact largely with confirmed fraudsters, they themselves
were not labeled as such. These are the types of nodes that would
warrant further study by a telecom analyst.

6 CONCLUSIONS

CallMine aims to help analysts detect and explain old and new
types of fraud in billion-scale call graphs. It has the following
properties: 1. Scalable: it scales linearly with the input size (see
Figure 5, Lemma 4.1); 2. Effective: it works on real-world data and
spots fraudsters 7,000× faster than before; 4. Flexible: it led to new

discoveries in supervised and unsupervised settings, such as the
‘ghost-destinations’ and ‘ghost-chasers’- see details in subsection 5.2.
3. Automatic: there is no need for parameter tuning.

Our code is open-sourced at GitHub, alongwith synthetic datasets.
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